Лизнева Ю.С., Костюкович А.Е., Кокорева Е.В. —
Анализ возможностей определения местоположения в сети Wi-Fi с использованием алгоритмов нейронных сетей
// Программные системы и вычислительные методы. – 2024. – № 4.
– С. 1 - 12.
DOI: 10.7256/2454-0714.2024.4.72107
URL: https://e-notabene.ru/itmag/article_72107.html
Читать статью
Аннотация: Позиционирование внутри помещений в сети Wi-Fi относится к классу задач, в которых зависимость выходных характеристик от входных переменных подвержена влиянию многих параметров и внешних факторов. При решении таких задач необходимо учитывать, что в определении местоположения существенный интерес представляет не только определение статических координат объекта, но и прогнозирование вектора его перемещений. В случае, когда местоположение объекта определяется только по уровню мощности сигнала, принимаемого от нескольких точек доступа в сети Wi-Fi, использование моделей затухания сигнала, учитывающих условия распространения радиоволн внутри помещений, затруднено из-за необходимости в достоверных сведениях о материале перекрытий, пола и потолка, наличии фиксированных и мобильных затеняющих объектов и т.д. Поскольку электромагнитная обстановка внутри помещения меняется в зависимости от многих факторов, вышеупомянутые модели приходится подстраивать под эти изменения. Так как нахождение закономерностей в большом объёме данных требует нестандартных алгоритмов, для решения задачи позиционирования можно использовать искусственные нейронные сети. Важно выбрать архитектуру нейронной сети, способную учитывать изменения уровня сигнала, принимаемого мобильным устройством от точек доступа сети Wi-Fi. Перед обучением нейронной сети проводится предобработка статистических данных. Например, из набора данных для машинного обучения исключаются аномальные случаи, когда в одной измерительной точке устройство фиксирует сигнал менее чем от трех точек доступа.
В результате анализа статистических данных было установлено, что одинаковое расстояние между измерительными точками приводит к тому, что нейронная сеть неверно определяет местоположение объекта. В работе показано, что в целях повышения точности позиционирования местоположения в условиях сложной радиообстановки при составлении радиокарт необходимо определить оптимальные варьирующиеся расстояния между измерительными точками. Проведённые экспериментальные исследования с учётом предложенного подхода к оптимизации расстояний между измерительными точками доказывают, что точность определения местоположения в подавляющем большинстве измерительных точек достигает 100%.
Abstract: Indoor positioning on a Wi-Fi network belongs to a class of tasks in which the dependence of output characteristics on input variables is influenced by many parameters and external factors. When solving such problems, it is necessary to take into account that in determining the location, it is of significant interest not only to determine the static coordinates of an object, but also to predict the vector of its movements. In the case where the location of an object is determined only by the level of signal power received from several access points on a Wi-Fi network, the use of signal attenuation models that take into account the conditions of propagation of radio waves indoors is difficult due to the need for reliable information about the material of ceilings, floors and ceilings, the presence of fixed and mobile shading objects, etc. Since the electromagnetic environment inside the room varies depending on many factors, the above-mentioned models have to be adjusted to these changes. Since finding patterns in a large amount of data requires non-standard algorithms, artificial neural networks can be used to solve the positioning problem. It is important to choose a neural network architecture that can take into account changes in the signal strength received by a mobile device from Wi-Fi access points. Before training a neural network, statistical data is preprocessed. For example, abnormal cases are excluded from the machine learning dataset when the device detects a signal from less than three access points at one measuring point.
As a result of the analysis of statistical data, it was found that the same distance between the measuring points leads to the fact that the neural network incorrectly determines the location of the object. The paper shows that in order to increase the accuracy of positioning the location in conditions of complex radio placement, when compiling radio maps, it is necessary to determine the optimal varying distances between measuring points. The conducted experimental studies, taking into account the proposed approach to optimizing the distances between measuring points, prove that the accuracy of location determination in the vast majority of measuring points reaches 100%.