Чернышев Ю.О., Венцов Н.Н., Пшеничный И.С. —
Возможный способ распределения ресурсов в условиях деструктивных воздействий
// Кибернетика и программирование. – 2018. – № 5.
– С. 1 - 7.
DOI: 10.25136/2644-5522.2018.5.27626
URL: https://e-notabene.ru/kp/article_27626.html
Читать статью
Аннотация: Предметом исследования является подход к распределению ресурсов в условиях возможных деструктивных воздействий.
Объектом исследования является модель процессов принятия решений распределительного характера в условиях возможных деструктивных воздействий.
Авторы рассматривают вопросы моделирования процессов распределения потоков ресурсов в условиях возможных нежелательных воздействий. Показано, что применение относительных нечетких оценок предпочтения маршрутов передачи ресурсов целесообразнее моделирования всей области распределения ресурсов с точки зрения временной сложности процесса принятия решений, так как на основе статистических и экспертных оценок можно сравнительно быстро определить предпочтительности маршрутов с точки зрения гарантированности передачи ресурса при деструктивных воздействиях.
Метод исследования базируется на использовании теории множеств, нечеткой логики, эволюционных и иммунных подходов. Использование нечетких отношений предпочтения позволяет сократить время построения модели, а применение эволюционных и иммунных методов – ускорить поиск решения. Основным выводом проведенного исследования является возможность использования относительных нечетких оценок предпочтения используемых маршрутов при организации распределения ресурсов. Предложен алгоритм распределения ресурсов в условиях деструктрвных воздействий, отличительной чертой которого является использование информации о реализованных ранее распределениях ресурсов при формировании множества начальных решений. Верификацию полученных решений предполагается производить при помощи метода отрицательного отбора – одного из способов моделирования иммунной системы. Модификацию имеющихся решений целесообразно производить, например, при помощи методов эволюционного моделирования.
Abstract: The subject of research is the approach to the allocation of resources in terms of possible destructive conditions.The object of the research is a model of decision-making processes of a distributional nature under the conditions of possible destructive influences. The authors consider the issues of modeling the processes of resource flow distribution under the conditions of possible undesirable effects. It is shown that the use of relative fuzzy estimates of resource transfer routes is more expedient than modeling the entire resource allocation area in terms of the time complexity of the decision-making process, since, based on statistical and expert assessments, route preferences can be quickly determined from the point of view of guaranteed resource transfer under destructive impacts.
The research method is based on the use of set theory, fuzzy logic, evolutionary and immune approaches. The use of fuzzy preference relations reduces the time to build a model, and the use of evolutionary and immune methods to speed up the search for a solution. The main conclusion of the study is the possibility of using relative fuzzy estimates of the preferences of the used routes when organizing the allocation of resources. An algorithm for the allocation of resources in the context of destructive influences is proposed, a distinctive feature of which is the use of information about previously implemented resource allocations in the formation of a set of initial solutions. Verification of the solutions obtained is supposed to be carried out using the method of negative selection - one of the methods of modeling the immune system. Modification of existing solutions is advisable to produce, for example, using the methods of evolutionary modeling.
Чернышев Ю.О., Венцов Н.Н., Долматов А.А. —
Разработка подхода, оперирующего с треугольным представлением нечетких чисел, на основе PSO-алгоритма
// Кибернетика и программирование. – 2017. – № 2.
– С. 1 - 7.
DOI: 10.7256/2306-4196.2017.2.22429
URL: https://e-notabene.ru/kp/article_22429.html
Читать статью
Аннотация: Предметом исследования являются интеллектуальные алгоритмы решения оптимизационных задач. Известно, что для одних и тех же проектных процедур в одних случаях необходимо получать точные решения, а в других достаточно получения приближенных решений. По этой причине актуальной является проблема управления точностью получаемых приближенных решений. Под приближенным решением можно понимать некоторую область точек, каждая из которых может быть в некоторой степени решением задачи. Предполагается, что на начальных этапах решения оптимизационной задачи допустимо оперировать нечеткими значениями, постепенно сужая область поиска. Предлагается подход который дополняет известный алгоритм «оптимизации с использованием роя частиц» возможностью обработки нечетких чисел с треугольным представлением. Современные многоагентные методы адаптивного поиска решений задач оптимизации, развиваются в направлении совершенствования способов взаимодействия между агентами. Например, известный метод «оптимизации с использованием роя частиц» (Particle Swarm Optimization, PSO) базируется на понятии популяции и моделирует поведение птиц в стае и косяков рыб. При этом классические биоинспирированные методы поиска решений оперируют, как правило, с четкими решениями. Разработана модификация PSO- алгоритма, за счет выполнения известных операций над нечеткими числами с треугольным представлением. Отличительной чертой предлагаемого подхода является организация интеллектуального процесса поиска в нечетком пространстве решений, оригинальность которого заключается в разработке способа движения интеллектуального агента (группы агентов) в пространстве образованном треугольным представлением нечетких чисел. Данный подход позволяет осуществлять поиск решений в нечетких пространствах, оперируя переменными вида «близко к X » не прибегая к лингвистическому анализу.
Abstract: The object of studies involves intellectual algorithm for solving optimization problems. It is known that for the same type of project procedures some cases require exact solutions, while others allow for approximate solutions. For this reason the issue of managing the exactness of the approximate solutions is so topical. An approximate solution may be regarded as some sphere of dots, each of them being a possible problem solution. It is supposed that at the early stages of solving optimization problems, it is possible to operate fuzzy ranges, while gradually narrowing the search area. The authors offer an approach, which complements the well-known algorithm of particle swarm optimization with the possibility to process fuzzy numbers with the triangular expression. The current multi-agent methods for the adaptive search for the optimization solutions are developed towards improvement of the interaction among the agents. For example, the well-known particle swarm optimization methods (PSO) is based upon the idea of population and it models the behavior of the birds in a flock or fish in a shoal. At the same time classic bio-inspired methods for finding solutions usually operate with clear solutions. The authors have developed the modification of the PSO algorithm thanks to performance of a number of known operations with the fuzzy numbers involving triangular expressions. The special feature of this approach is organization of the intellectual searching process in a fuzzy solution space. Its originality is due to the development of the method for the movement of an agent (group of agents) within the area formed with the triangular expression of fuzzy numbers. This approach allows for searching for solutions in fuzzy spaces, operating with the variables of the "close to X" type, avoiding the linguistic analysis.