Библиотека
|
ваш профиль |
Национальная безопасность / nota bene
Правильная ссылка на статью:
Белов П.Г.
Коррупция как угроза национальной безопасности России. Оценка и снижение риска на основе моделирования
// Национальная безопасность / nota bene.
2019. № 1.
С. 20-31.
DOI: 10.7256/2454-0668.2019.1.28698 URL: https://nbpublish.com/library_read_article.php?id=28698
Коррупция как угроза национальной безопасности России. Оценка и снижение риска на основе моделирования
DOI: 10.7256/2454-0668.2019.1.28698Дата направления статьи в редакцию: 18-01-2019Дата публикации: 27-02-2019Аннотация: Предметом настоящей статьи является процесс и результаты исследования коррупционного вызова (КВ) национальной безопасности современной России, под которым подразумевается такое развитие соответствующей угрозы в нынешний исторический период, которое требует неотложного и системного реагирования для сохранения нашей (русской) нации и созданной ею страны. Основной акцент при этом сделан на априорную количественную оценку меры возможности возникновения и разрушительного проявления рассматриваевого вызова и ожидаемого от него социально-экономического ущерба. В качестве основного инструментария используется логико-вероятностное и графо-аналитическое моделирование, а также основанные на нём системный анализ обстоятельств распространения коррупции и системный синтез предложений по её ограничению. Содержание статьи является оригинальным и конструктивным: автору неизвестны другие общедоступные публикации, где излагался бы подобный способ прогнозирования и снижения риска опасных социальных процессов. Разработанная им модель отличается не только возможностью учета большого числа существенных факторов, но также легкостью восприятия специалистами и лицами, принимающими решения, что важно для структурирования их контрольно-управленческой деятельности по ветвям данной модели. Ключевые слова: анализ, синтез, дедукция, индукция, оптимизация, затраты, ущерб, угроза, вызов, показательAbstract: The subject of this article is the process and results of examination of the corruption challenge to national security of modern Russia, which implies such development of corresponding thread in the current historical period that requires the urgent and systemic response in order to protect the Russian nation and the country it created. The central focus is the a priori quantitative assessment of the possibility of emergence and destructive manifestation of the aforementioned challenge and the expected socioeconomic damage. The content of this article is original and constructive: the author is unaware of any open to public materials that use similar method of forecasting and risk mitigation of the dangerous social processes. The developed model also outstands with the capability to consider an extensive amount of significant factors, as well as ease of digestion by the experts and decision-makers, which is important for structuring of their monitoring and management activities in accordance with the branches of the presented model. Keywords: analysis, synthesis, deduction, induction, optimization, cost, damage, threat, call, indicator1. Актуальность проблемы и исходные предпосылки для её решения Цель настоящей статьи – представить результаты исследования, направленного на поддержание национальной безопасности России (НБР) и содержащего предложения по созданию системы мер по адекватному противодействию коррупционному вызову (КВ), порожденному обострением соответствующих угроз. Значимость и актуальность исследования в России заявленной проблемы усиливается тем, что в условиях политической нестабильности, неразвитости и несовершенства законодательства, неэффективной работы органов власти, слабости институтов гражданского общества, низкой политической культуры граждан и отсутствия прочных демократических традиций сложно разработать и реализовать на практике мероприятия по противодействию распространению коррупции. При этом ошибочно считается, что ущерб от коррупции можно измерять лишь косвенно – с помощью индексов, которые ныне принято делить на три группы [1]. 1. Индексы, интегрирующие информацию из многих источников, среди которых наиболее известен Индекс восприятия коррупции (Corruption Perception Index), фиксирующий нынешние представления об её уровне в конкретной стране. 2. Индексы, составленные на основе опросов предпринимателей и населения для оценки коррупционного давления на бизнес. Их примерами служат «Business Environment and Enterprise Performance Survey» и «Executive Opinion Survey». 3. Индексы, полученные обработкой мнений экспертов: «Nationsin Transit Report» и «International Country Risk Guide». Их целевое применение подобно предыдущему, но отличается большей политизированностью и ценностью для применения иностранными инвесторами. Российская Федерация относится к странам, в которых коррупция получила широкомасштабное распространение [2]. Согласно данным «Transparency International», по рейтингу восприятия коррупции за 2017 год мы заняли 135-е место из 180-ти. В настоящее время не исправили ситуацию с распространением у нас коррупции даже суды над экс-министром экономического развития А. Улюкаевым и бывшими губернаторами Н. Белых, А. Хорошавиным [3]. Хотелось бы отметить, что использование перечисленных индексов затрудняет оценку влияния конкретных факторов, а значит – и обоснование предложений по парированию самых негативных. Понимая это, авторы [4] предложили, например, иной способ оценивания коррупции, основанный на моделировании процессов её возникновения и распространения по разным стратам современного общества. Аналогичная технология предлагается автором данной статьи с тем отличием, что конструктивность его исследования по прогнозу и снижению риска рассматриваемого опасного социального процесса удалось обеспечить благодаря комплементарному использованию потенциала гуманитарных и естественных наук. Если конкретнее, то данное обстоятельство позволило компенсировать присущую обществоведам излишне расширительную или расплывчатую трактовку оперируемых понятий и количественных характеристик, а также ограниченность привлекаемых там индуктивно-статистических методов, за счёт привлечения достижений естественников в современной математике и вычислительной технике, позволяющих оперировать графо-аналитическими моделями, учитывающими почти все существенные факторы и параметры, представляя их лингвистическими [5] переменными и нечетким числами [6]. Что касается количественной оценки негативного эффекта коррупции, то для этого здесь используется риск, т.е. интегральная мера её опасности, одновременно характеризующая и возможность Poss (x) наступления исследуемой чрезвычайной ситуации Х, и её разрушительный эффект, определяемый размером ожидаемого ущерба Y и временем T <до> его проявления. Сузить область значений этих параметров риска и облегчить процесс их представления автор предлагает с помощью соответствующей универсальной шкалы (таблица 1), содержащей не только лингвистические (три левых столбца), но и числовые (на отрезке 0-1) значения каждого из трёх параметров риска, которые размещена там справа. Таблица 1 – Универсальная шкала базовых оценок параметров риска Table 1 – Universal scale of basic estimates of risk parameters Еще раз обратим внимание, что информация трёх левых колонок табл. 1 будет использоваться ниже для получения экспертных оценок, применяемых в качестве исходных данных для прогноза риска путём моделирования, а также для интерпретации полученных при этом результатов. Тогда как дробные числа её правой колонки – для ввода этих данных в специализированный программный комплекс для автоматизированного системного (качественного и количественного) анализа предварительно разработанной модели с целью априорной оценки параметров риска КВ и представления полученных при этом результатов моделирования. 2. Идея и технология моделирования КВ Для априорной количественной оценки риска рассматриваемого здесь вызова, автором использована технология логико-вероятностного моделирования процесса его формирования и разрушительного развития [7]. Данный выбор обусловлен большей пригодностью этого метода в сравнении с разного рода индексами благодаря возможности контроля как адекватности используемой модели, так и полученных при этом результатов его системного анализа другими специалистами, что недоступно для перепроверки подобных экспертных суждений. Что касается идеи моделирования КВ с помощью упомянутых выше моделей (диаграмм причинно-следственных связей типа «дерево»), то она проиллюстрирована на рисунке 1. В его верхней левой половине размещено так называемое «дерево происшествия – ДП», содержащее пять исходных событий и две предпосылки (А, В) верхнего уровня, которые соединены линиями с узлами логического перемножения и сложения. Правая же половина известна как «дерево событий – ДС», которое там имеет два (C, D) промежуточных и пять конечных исходов моделируемого явления Х, характеризуемых конкретными ущербами. Под данной иллюстративной моделью указано содержание имеющихся символов и их эквивалентов, применяемых в её математических и компьютерных аналогах. Они приведены в нижней части рис. 1, включающей: а) структурную функцию Х=[f1(1, 2, …, 5)] возникновения моделируемого явления, б) общее выражение для оценки меры возможности Poss(Х)= f2[P1, …, P5)] его наступления по таким же параметрам Рi исходных предпосылок ДП; в) формулу для расчета математического ожидания M[Y] возможного ущерба, через условные меры возможности Qjk=Poss(yjk) всех конечных несовместных исходов ДС, и размеры сопутствующего им ущерба Yjk. Сам же процесс формирования и развития моделируемого явления здесь будет имитироваться прохождением некоторого сигнала от исходных предпосылок левой части данной диаграммы к её центру Х, а от него – к одному, а иногда – и обоим сценариями (последовательностям исходов ДС, принадлежащих их первому, последующим и конечному уровням). При этом условия логического сложения и перемножения призваны пропускать данный сигнал определённым образом: первое – при наличии хотя бы одного из них на входе, а второе – когда все сигналы имеются одновременно на его входе. Рисунок 1 – Идея логико-вероятностного моделирования КВ Figure 1– The idea of logical-probabilistic modeling of the CC Естественно, что продвижению сигнала могут препятствовать различные барьеры, роль которых играют заблаговременно предусмотренные организационные мероприятия, относящиеся к следующим четырём стратегиям снижения риска: а) уменьшение мер возможности появления различных предпосылок ДП; б) недопущение образования из них причинной цепи моделируемого явления Х; в) изменение условных вероятностей сценариев его возможного развития в пользу более благоприятных; г) смягчение последствий самых разрушительных исходов ДС. Используя рассмотренную выше идею, удалось построить логико-лингвистическую модель [8] появления КВ НБР в форме ДП, которая показана на рисунке 2. Рисунок 2 – Логико-лингвистическая модель возникновения КВ Figure 2 – The logical-linguistic model of the CC appearance Поясним, что эта модель отличается от левой части рис. 1 поворотом на 90 градусов против часовой стрелки. Наименование же всех 27 её исходных предпосылок совместно с мерами возможности Poss(хi) их появления (получены экспертным опросом специалистов одного из НИИ МВД России) даны в таблице 2. Таблица 2 – Сведения об исходных предпосылках КВ Table 2 – Information for the CC background events Что касается разрушительного проявления исследуемого КВ, то логико-лингвистическая модель соответствующего ДС представлена на рисунке 3. Рисунок 3 – Логико-лингвистическая модель разрушительного проявления КВ Figure 3– The logical-linguistic model of the CC destructive manifestation Поясним, что в отличие от рис. 1, это ДС повернуто уже на 90 градусов по часовой стрелке, а сведения о всех .его конечных исходах приведены в таблице 3. Таблица 3 – Сведения о конечных исходах разрушительного проявления КВ Table 3 – Information about the final outcomes of the CC destructive manifestation Учитывая сложность только что представленных графических моделей, для проведения их количественного анализа (выполнения преобразований, указанных в нижней части рис. 1), был привлечён специализированный программный комплекс автоматизированного расчета безопасности и техногенного риска – «АРБИТР» [9]. Технология проведения такого анализа совместно с принятыми в ней графическими символами и операциями изложены в руководстве пользователя этого уникального отечественного продукта. 3. Результаты автоматизированной оценки риска КВ Подтверждением возможности и конструктивности автоматизированного количественного анализа приведенных выше логико-лингвистических моделей с целью не только прогноза риска КВ, но и обоснования предложений по его снижению, служит фрагмент интерфейса ПК «АРБИТР», показанный на рисунке 4. Поясним, что в центре этого рисунка размещено событие Х (малый затемнённый круг с цифрой 49 справа), представляющее факт появления моделируемого КВ. Самые нижние и такие же верхние круги большого диаметра с цифрами (1 – 27) и (68 – 80) внутри соответствуют его исходным предпосылкам и конечным исходам. Тогда как все промежуточные предпосылки ДП и часть таких же исходов ДС заменены кругами малого диаметра, соединенными линиями со стрелками или утолщением. ДС также имеет круги большого диаметра с входящими в них инверсными дугами, благодаря которым учитывается несовместность тех сценариев развития КВ, которые завершаются исходами 68 – 70 и 71,72; 73,74 и 75,76; 77,78 и 79,80. А вот «грозди» самой верхней части рис. 4 уже отражают возможность совместного наступления всех конечных исходов ДС, представляя их сочетания малыми кругами с цифрами справа. Напомним, что предназначение всех линий данного интерфейса (конъюнкция, дизъюнкция, инверсия) пояснено в нижней части рис. 1, а наименования 27-ми случайных событий из его нижней части и 13-ти – верхней, вместе с их нечеткими параметрами, являющимися исходными данными для автоматизированного системного (количественного и качественного) анализа модели КВ, имеютсяв табл. 2 и 3. С помощью последних был проведен количественный анализ этой сдвоенной модели, который дал следующие результаты: а) мера возможности Poss(X=49) наступления КВ в течение пяти лет оказалось равной ≈ 0,6 (согласно табл. 1 это соответствует высказыванию «практически возможно»), б) ожидаемый от его деструктивного проявления средний экономический ущерб M[Y]=1,15∙106 человекогодов утраченного социального времени. Рисунок4 – Интерфейс «АРБИТР» с моделью КВ и частью результатов её анализа Figure4– Fragment of the "ARBITR" interface with the CC model and some results of its analysis Другаяважная часть результатов количественного анализа разработанной модели представлена в нижней части рис. 4. Если конкретнее, то имеющаяся в ней диаграмма наглядно демонстрирует влияние на величину риска КВ всех тех его факторов и исходов, которые обозначены там своими цифровыми кодами. Используемые при этом показатели подобного влияния конкретных событий модели означают следующее: 1) значимость, численно равная изменению величины Poss (X) или M[Y] при изменении этих же параметров предпосылки либо исхода на один процент относительно текущего значения; 2) положительный и 3) отрицательный вклады, отражающие такой же эффект, но уже при варьировании мер возможности предпосылки Poss(хi) или исхода Poss(yjk) до нуля и единицы соответственно. Что касается более точных количественных оценок значений показателей значимости ∂Poss(Х)/∂Poss(xi)│Poss(Х)=Poss(49) и вкладов (положительный «+» и отрицательный), то эти сведения представлены в таблице 4. Таблица 4 – Фрагмент отчета с дополнительными результатами анализа модели КВ Table 4 – Fragment of the report on the adding results of the CС model analysis Поясним, что табл. 4 является ещё одним фрагментом интерфейса ПК "АРБИТР" с результатами системного анализа модели КВ. Как это видно из её левой части, величина влияния исходных предпосылок ДП может отличаться на несколько арифметических порядков, а его величина не всегда пропорциональна мере возможности их появления. Обратим также внимание на пригодность программного комплекса АРБИТР для проведения автоматизированного качественного анализа модели КВ с целью выявления так называемых «минимальных сочетаний» (minsets) исходных событий-предпосылок ДП. При этом обычно применяют два типа подобных сочетаний: 1) минимальное пропускное (pass minset), включающее наименьшее число тех событий, одновременное появление которых достаточно для возникновения моделируемого опасного явления Х; 2) минимальное отсечное (cut minset), состоящее из наименьшего числа предпосылок ДП, одновременное непоявление которых исключает возникновение Х. Сведения о части подобных сочетаний приведены в правой части табл. 4 – на примере 12 (9-ти первых и 3-х последних) минимальных пропускных и отсечных сочетаний, совместно с информацией, подтверждающей сложность системного анализа подобных моделей вручную. Действительно, ведь число членов в используемых при этом выражениях алгебры событий Х = f1(хi) и вероятностных функциях Poss(X) =f2[Poss(xi)] оценивается сотнями и тысячами. Подтверждением тому служат сведения 1) средней правой части рис. 4, указывающие на размеры а) выражения ВФ=Poss(Х), включающего 2424 слагаемых и б) алгебры событий (ФРС=Х), имеющего 120/24 конъюнкции; 2) правой части табл. 4, где два штриха вверху символов Х относятся к минимальным отсечным сочетаниям, означая там непоявление соответствующих исходных предпосылок ДП. 4. Обсуждение результатов исследования Завершая изложение статьи, целесообразно оценить её основные результаты на предмет актуальности, новизны и конструктивности. Сделаем это последовательно и кратко с применением соответствующих аргументов, начиная с обоснования важности имеющихся здесь авторских положений. Прежде всего, укажем на необходимость и целесообразность внедрения междисциплинарного инструментария в практику исследования и обеспечения НБ, а значит – и подготовки будущих специалистов к выполнению соответствующих профессиональных обязанностей. Как было продемонстрировано на конкретном примере прогнозирования риска КВ НБР, предложенный автором способ выгодно отличается от бытующих ныне, преимущественно гуманитарных подходов к решению этой задачи. Его основное достоинство заключается не столько в возможности априорной оценки абсолютной величины показателей социального риска КВ, сколько в выявлении и ранжировании наиболее значимых для них факторов. Привлечение для этого системного анализа на основе моделирования подобных опасных процессов в нашей стране будет способствовать более рациональному выбору приоритетов в использовании и распределении дефицитных ныне ресурсов. Что касается новизны рассмотренной модели, то отметим её оригинальность. По крайней мере, автору неизвестны другие общедоступные публикации, где излагался бы подобный способ прогнозирования и снижения риска аналогичных опасных социальных явлений. Разработанная им модель отличается не только возможностью учета большого числа существенных факторов, но также легкостью восприятия специалистами и лицами, принимающими решения, что особенно важно для структурирования их контрольно-управленческой деятельности по ветвям построенных выше ДП и ДС. Говоря же о конструктивности моделирования КВ и других опасных социальных явлений, укажем пригодность их результатов для оптимизации мероприятий по снижению оцененного при этом риска. Дело в том, число факторов, влияющих на возможность возникновения и разрушительного проявления подобного вызова НБР велико, тогда как затраты на парирование его негативных факторов и ожидаемый от этого эффект заметно отличаются. В ещё большей мере это справедливо и для комплексов соответствующих мероприятий благодаря колоссальному числу различных сочетаний и только что отмеченной разницы в издержках и окупаемости конкретных наборов альтернативных мероприятий. Следовательно, в данных условиях уместна вербальная постановка следующей задачи условной оптимизации: «Из множества W предложенных мероприятий по снижению риска конкретного опасного явления, выбрать такой их комплекс Wk, внедрение которого обеспечит максимально возможное снижение DY(Wk) ущерба, а требуемые для этого средства S(Wk) не превысят выделенных – SВЫД(Wk)». Более строгая (математическая) постановка этой задачи условной оптимизации имеет вид системы соответствующих неравенст: Поясним, что используемое здесь уменьшение ущерба от КВ можно рассчитывать по следующей формуле: DY(Wk)=DP(Х)×М[Y], где DP(Х) – снижение меры возможности наступления данного опасного социального явления, определяемое повторным количественным анализом модели после внесения изменений в её исходные данные. При этом имеющиеся там затраты и ущерб измеряются в одних и тех же человеко-днях утраченного социального времени или в эквивалентных им денежных единицах. В качестве метода решения данной оптимизационной задачи можно использовать как полный, так и целенаправленный перебор с помощью одного из методов математического программирования. Что касается конкретных предложений по снижению риска КВ, то они должны соответствовать тем четырём стратегиям, которые были перечислены выше (см. разд. 2). Если конкретнее, то от органов власти потребуется а) законодательное обеспечение реализации этих стратегий с помощью конкретных мероприятий с целью повышения прозрачности отношений в сфере экономики и демонстрации политической воли преследовать нарушителей за неисполнение законов, б) более полное взаимодействие с общественными организациями и бизнесом как с партнерами. Эти и другие подобные рекомендации имеются в обстоятельном исследовании данной проблемы [10]. Предотвращать и предупреждать коррупцию гораздо эффективнее, чем бороться с последствиями ее проявления. Проводимая государством политика в этом направлении на сегодняшний день представляются крайне неэффективной: вместо отказа от использования борьбы с коррупцией с целью наказания неугодных кому-то из числа власть предержащих, осуществляемые ею действия напоминают работу пожарной команды, т.е. случайные, непоследовательные и нередко запаздывающее реагирование на уже случившиеся преступления [11]. Кроме того, некоторые из них являются мероприятиями, имитирующими борьбу с коррупционерами и имеющими явный популистско-демонстративный характер. * * * В заключение, представляется уместным не только признать обоснованность возможных упреков относительно малой точности априорной количественной оценки риска рассматриваемого здесь опасного социального явления, но и одновременно напомнить, что в подобных по сложности исследованиях принципиально невозможно получение высокоточных прогнозов [12]. Поэтому целью подобного моделирования обычно служит не достоверная оценка абсолютных значений соответствующего риска, а обоснование предложений по устранению или усилению выявленных с его помощью «узких мест». Данная цель более практична и рациональна, так как при ее достижении уже приходиться оперировать относительными значениями соответствующих величин, что оправдано, даже если их абсолютные значения не обязательно совпадают с истинными величинами, но принадлежат области их действительных значений. Библиография
1. Барсуков С., Леденева А. От глобальной коррупционной парадигмы к изучению неформальных практик: различие в подходах аутсайдеров и инсайдеров [From the global corruption paradigm to the study of informal practices: the difference in the approaches of outsiders and insiders. Russia]. Вопросы экономики. 2014. №2. С. 118 – 132.
2. Клейнер В.Г. Коррупция в России. Россия в коррупции. Есть ли выход? [Corruption in Russia. Russia Corrupted. Is There a Way Out? Russia] /Препринт WP/2014/309. М.: ЦЭМИ РАН. 2014. – 49 c. 3. Гробман Екатерина. Индекс восприятия коррупции в России остается неизменным [Corruption Perception Index in Russia Remains Unchanged. Russia]. Коммерсант от 21 февраля 2018 г. 4. Зенюк Д.А., Малинецкий Г.Г., Фаллер Д.С. Социальная модель коррупции в иерархических структурах [Social model of corruption in hierarchical structures. Russia] // Препринт ИМП им. М.В. Келдыша РАН. 2013. № 87. – 27 с. 5. Заде Л.А. Понятие лингвистической переменной и его применение к принятию решений [The concept of a linguistic variable and its application to decision making. Russia]. Новое в зарубежной науке и технике. Математика, №3. М.: Мир. 1976. – 196 с. 6. Дюбуа Д., Прад А. Теория возможностей. Приложения к представлению знаний в информатике [Possibility theory. Applications to the representation of knowledge in computer science] / пер. с фр.. М.: Радио и связь. 1990. – 288 с. 7. Белов П.Г. Управление рисками. Системный анализ и моделирование [Management of risks. System analysis and modeling. Russia]. М.: Юрайт. 2014. – 728 с. 8. Логико-лингвистические модели в военных системных исследованиях [Logical-linguistic models in military system studies. Russia] / под ред. Е.А. Евстигнеева. М.: МО СССР. 1988. – 232 с. 9. Программный комплекс АРБИТР [Program complex (software) ARBITR. Russia]. URL: https://szma.com/pkasm.shtml (дата обращения: 30.08.2018). 10. Доктрина государственной политики противодействия коррупции и теневой экономике в Российской Федерации [The doctrine of the state policy of combating corruption and the shadow economy in the Russian Federation. Russia]. Сулакшин С.С., Ахметзянова И.Р., Вилисов М.В., Максимов С.В., Сазонова Е.С. М.: Научный эксперт. 2009. – 216 с. 11. Белов П.Г. Национальная безопасность. Теория, методология, практика [National security. Theory, methodology, practice. Russia] СПб: Стратегия будущего. 2015. – 486 с. (≈40 п.л.) 12. Assessment of Uncertainties in Risk Analysis of Chemical Establishments. The Assurance project. Lauridsen K., Kozine I., Markert F. et al. URL: http://riskprom.ru/_ld/2/265_ris-r-1344.pdf (дата обращения: 8.12.2018) References
1. Barsukov S., Ledeneva A. Ot global'noi korruptsionnoi paradigmy k izucheniyu neformal'nykh praktik: razlichie v podkhodakh autsaiderov i insaiderov [From the global corruption paradigm to the study of informal practices: the difference in the approaches of outsiders and insiders. Russia]. Voprosy ekonomiki. 2014. №2. S. 118 – 132.
2. Kleiner V.G. Korruptsiya v Rossii. Rossiya v korruptsii. Est' li vykhod? [Corruption in Russia. Russia Corrupted. Is There a Way Out? Russia] /Preprint WP/2014/309. M.: TsEMI RAN. 2014. – 49 c. 3. Grobman Ekaterina. Indeks vospriyatiya korruptsii v Rossii ostaetsya neizmennym [Corruption Perception Index in Russia Remains Unchanged. Russia]. Kommersant ot 21 fevralya 2018 g. 4. Zenyuk D.A., Malinetskii G.G., Faller D.S. Sotsial'naya model' korruptsii v ierarkhicheskikh strukturakh [Social model of corruption in hierarchical structures. Russia] // Preprint IMP im. M.V. Keldysha RAN. 2013. № 87. – 27 s. 5. Zade L.A. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu reshenii [The concept of a linguistic variable and its application to decision making. Russia]. Novoe v zarubezhnoi nauke i tekhnike. Matematika, №3. M.: Mir. 1976. – 196 s. 6. Dyubua D., Prad A. Teoriya vozmozhnostei. Prilozheniya k predstavleniyu znanii v informatike [Possibility theory. Applications to the representation of knowledge in computer science] / per. s fr.. M.: Radio i svyaz'. 1990. – 288 s. 7. Belov P.G. Upravlenie riskami. Sistemnyi analiz i modelirovanie [Management of risks. System analysis and modeling. Russia]. M.: Yurait. 2014. – 728 s. 8. Logiko-lingvisticheskie modeli v voennykh sistemnykh issledovaniyakh [Logical-linguistic models in military system studies. Russia] / pod red. E.A. Evstigneeva. M.: MO SSSR. 1988. – 232 s. 9. Programmnyi kompleks ARBITR [Program complex (software) ARBITR. Russia]. URL: https://szma.com/pkasm.shtml (data obrashcheniya: 30.08.2018). 10. Doktrina gosudarstvennoi politiki protivodeistviya korruptsii i tenevoi ekonomike v Rossiiskoi Federatsii [The doctrine of the state policy of combating corruption and the shadow economy in the Russian Federation. Russia]. Sulakshin S.S., Akhmetzyanova I.R., Vilisov M.V., Maksimov S.V., Sazonova E.S. M.: Nauchnyi ekspert. 2009. – 216 s. 11. Belov P.G. Natsional'naya bezopasnost'. Teoriya, metodologiya, praktika [National security. Theory, methodology, practice. Russia] SPb: Strategiya budushchego. 2015. – 486 s. (≈40 p.l.) 12. Assessment of Uncertainties in Risk Analysis of Chemical Establishments. The Assurance project. Lauridsen K., Kozine I., Markert F. et al. URL: http://riskprom.ru/_ld/2/265_ris-r-1344.pdf (data obrashcheniya: 8.12.2018)
Результаты процедуры рецензирования статьи
В связи с политикой двойного слепого рецензирования личность рецензента не раскрывается.
Методология исследования строится на научном поиске, а также применении методов системного анализа, графической интерпретации, индукции, дедукции, сопоставления, аналогии, группировки и обобщения данных для формулирования выводов по результатам исследования. Актуальность темы исследования очевидна. В условиях попыток стабилизации экономики, совершенствования правовой среды, усиления вертикали власти и повышения ее эффективности в России, интеграции в моровое экономическое пространство, одной из злободневных проблем остается коррупция, являющаяся сильнейшей угрозой национальной безопасности. Автором в начале статьи хорошо обоснована ее значимость и своевременность. Предлагается система качественных и количественных критериев оценки негативного эффекта коррупции, среди которых выделяется риск. Автором предлагается моделирование коррупционных вызовов национальной безопасности. Интерес представляет предоставленная на рисунке 2 логико-лингвистическая модель возникновения коррупционных вызовов, а также предпосылки их возникновения. Автор справедливо отмечает и доказывает целесообразность и конструктивность автоматизированного количественного анализа рассмотренных в тексте статьи логико-лингвистических моделей с целью прогноза риска и обоснования предложений по снижению риска реализации коррупционных вызовов. Научная новизна заключается в попытке автора данной статьи по-новому взглянуть на проблемы анализа, моделирования, прогнозирования коррупционных вызовов с целью снижения риска их наступления и нивелирования негативных последствий в случае реализации. Следует отметить результирующую часть статьи, авторские выводы и обоснование научной и практической значимости полученных результатов. Стиль изложения текста - научный. Структура статьи логически выстроена. Содержание соответствует названию. С положительной стороны характеризует данную статью наличие рисунков и таблиц, отражающих моделирование коррупционных вызовов для целей борьбы с ними. Библиография включает 12 актуальных источников по теме исследования, что представляется достаточным. По тексту статьи имеются соответствующие ссылки на источники. Апелляция к оппонентам представлена обращением автора к ряду публикаций по исследуемой проблематике. Замечания и рекомендации: - статья перенасыщена аббревиатурам, которые хотя и имеют расшифровку при первом упоминании в тексте, встречаются часто по тексту статьи и усложняют восприятие материала читателем; - над названием статьи необходимо поработать. Варианты: "Моделирование коррупционных вызовов и угроз для целей обеспечения национальной безопасности России" или "Оценка и снижение коррупционных рисков национальной безопасности на основе моделирования ". Выводы. Статья интересна, актуальна и характеризуется новизной. Представленные замечания носят рекомендательный характер. По формальным признакам и содержательной части статья соответствует требованиям журнала. Считаем целесообразным принять статью к публикации. |