Библиотека
|
ваш профиль |
Кибернетика и программирование
Правильная ссылка на статью:
Майер Р.В.
О применении вычислительных экспериментов при изучении физики
// Кибернетика и программирование.
2014. № 6.
С. 74-84.
DOI: 10.7256/2306-4196.2014.6.13483 URL: https://nbpublish.com/library_read_article.php?id=13483
О применении вычислительных экспериментов при изучении физики
DOI: 10.7256/2306-4196.2014.6.13483Дата направления статьи в редакцию: 02-11-2014Дата публикации: 16-11-2014Аннотация: Рассматривается проблема использования учебных вычислительных экспериментов (УВЭ) при изучении физических явлений. Под УВЭ понимается эксперимент над математической моделью объекта, проводимый с помощью ЭВМ с целью обучения. Совокупность упрощенных вариантов научных вычислительных экспериментов, адаптированных к условиям обучения, образуют систему УВЭ. В статье проанализированы примеры использования учебного вычислительного эксперимента для: 1) изучения намагничивания ферромагнетика, получения кривой намагниченности и петли гистерезиса; 2) исследования хаотических колебаний маятника Дафинга, возникновения бифуркации при изменении профиля потенциальной ямы, изучения сечения Пуанкаре и эволюции фазового объема. Применяются методы математического и компьютерного (имитационного) моделирования, предполагающие построение математической модели и создание компьютерной программы, имитирующей изучаемое явление на основе численного решения соответствующей системы уравнений. Новизна работы состоит в том, что в ней предложены четыре простые компьютерные программы на языке Pascal, позволяющие: 1) получить кривую намагниченности и петлю гистерезиса для ферромагнетка в изменяющемся магнитном поле; 2) промоделировать колебания маятника Дафинга; 3) изучить переход осциллятора в хаотический режим при изменении профиля потенциальной ямы; 4) получить сечение Пуанкаре и изучить эволюцию фазового объема для маятника Дафинга. Ключевые слова: информационные технологии, компьютерное моделирование, программирование, компьютерные симуляции, физические явления, обучение, намагничивание ферромагнетика, магнитные гистерезис, маятник Дафинга, динамический хаосУДК: 004.02Abstract: The author reviews a problem of use of educational computational experiments in the study of physical phenomena. By educational computational experiment author means experiment on the mathematical model of the object carried out with the aid of a computer for the purpose of learning. A set of simplified versions of educational computational experiments adapted to the conditions of learning form a System of educational computational experiments. The article analyzes the examples of the use of educational computer experiment for: 1) for the study of the magnetization of a ferromagnet, calculation of the magnetization curve and hysteresis loop; 2) study of chaotic oscillations of a Dafing pendulum, occurrence of bifurcation in changes in the profile of the potential well, study of Poincaré section and the evolution of the phase volume. The authors apply mathematical and computational methods (simulation) modeling, which involves the construction of a mathematical model and building a software simulating the phenomenon under study based on the numerical solution of the corresponding to its’ system of equations. The novelty of the work is in the proposed four simple computer programs in Pascal, allowing: 1) obtain the magnetization curve and hysteresis loop for a ferromagnet in a changing magnetic field; 2) simulate the oscillation of the Dafing pendulum; 3) study the transition of oscillator into the chaotic regime at a change of the potential well; 4) get a Poincaré section and to study the evolution of the phase volume for Dafing pendulum. Keywords: information technology, computer simulation, programming, computer simulations, physical phenomena, education, magnetization of a ferromagnet, magnetic hysteresis, Dafing pendulum, dynamic chaos1. Введение Развитие информационных технологий создало предпосылки для использования компьютерных моделей при изучении физических явлений [1-6]. Имеет смысл говорить об учебном вычислительном эксперименте, под которым следует понимать упрощенные варианты научного вычислительного эксперимента, адаптированные к условиям обучения. Фактически это эксперимент над математической моделью объекта, проводимый с помощью ЭВМ с целью обучения. В процессе выполнения УВЭ учащиеся изменяют параметры модели исследуемой системы, характер и величину внешних воздействий, начальные условия и "наблюдают", как при этом изменяется отклик системы, скорость и направление протекающих процессов. Это позволяет изучить динамику изменения различных величин, характеризующих изучаемое явление, сформировать его наглядный образ, повысить интерес студентов к физике. УВЭ следует рассматривать как дополнение к учебной теории и учебному натурному эксперименту и использовать в сочетании с ними. Рассмотрим два примера использования УВЭ для изучения физических систем. 2. Компьютерное моделирование намагничивания ферромагнетика При изучении явления намагничивания ферромагнетика обычно рассматривают следующий опыт. Ферромагнитный стержень вставляют в обмотку из n витков, которая подключена к источнику тока. Увеличивают силу тока I в обмотке, измеряют индукцию B магнитного поля. Затем уменьшают силу тока, пропускают ток в противоположном направлении, увеличивая и затем уменьшая его до нуля. Используя результаты измерения H и B, строят кривую намагничивания B(H). Для более глубокого понимания физической сущности этого явление можно решить следующую задачу.
где H=nI – напряженность магнитного поля. Индукция магнитного поля Bij в данном узле сетки (i, j) обусловлена внешним полем обмотки H и магнитным полем, создаваемым соседними атомами. В проекции на ось Ox:
Задача 2. С помощью компьютерной модели исследуйте зависимость формы петли гистерезиса от величины магнитного момента p атомов ферромагнетика.
3. Моделирование хаотических колебаний маятника Дафинга Примером простой механической системы, обнаруживающей способность к хаотическому движению, является осциллятор Дафинга. Он представляет собой частицу, движущуюся в потенциальной яме с двумя углублениями. Рассмотрим несколько задач, которые могут быть решены при изучении хаотического движения маятника Дафинга.
Задача 4. Получите сечения Пуанкаре для вынужденных колебаний маятника Дафинга, происходящих под действием внешней периодически изменяющейся силы. Для этого рассмотрите фазовую кривую в пространстве, образованном осями x, p и F, и получите множество точек ее пересечения с плоскостью F=const.
Задача 5. Промоделируйте переход к хаосу в случае, когда на маятник Дафинга действует гармоническая сила при изменяющемся профиле потенциальной ямы. Получите точку бифуркации, в которой происходит раздвоение пути эволюции системы.
Необходимо многократно (1000 раз) моделировать вынужденные колебания маятника Дафинга при случайной начальной фазе вынуждающей силы, а на экран компьютера выводить координаты x через заданное время после начала колебаний, когда они уже установились. Одновременно с этим должен изменяться бифуркационный параметр b, определяющий профиль потенциальной ямы (рис. 4.1). При удачном подборе параметров модели когда параметр b начинает превышать критическое значение bk=0, вместо одной потенциальной ямы получается две, и система начинает совершать колебания относительно одного из двух положений равновесия. На экране ставится точка, показывающая координату x в заданный момент t, и все повторяется снова. Начальная фаза силы изменяется случайным образом, поэтому шарик оказывается то в левом, то в правом углублении. В результате получается бифуркация типа вил (рис. 4.2). Задача 6. Промоделируйте перемешивание фазового объема в случае свободных незатухающих колебаний маятника Дафинга.
4. Заключение В настоящей статье предложены примеры использования учебного вычислительного эксперимента для изучения намагничивания ферромагнетика и хаотических колебаний маятника Дафинга. Рассмотренные программы позволяют: 1) получить кривую намагниченности и петлю гистерезиса для ферромагнетка в изменяющемся магнитном поле; 2) промоделировать колебания маятника Дафинга; 3) изучить переход осциллятора в хаотический режим при изменении профиля потенциальной ямы; 4) получить сечение Пуанкаре и изучить эволюцию фазового объема для маятника Дафинга. Рассмотренные компьютерные модели могут быть использованы в качестве лекционных демонстраций, на практических занятиях и лабораторных работах при изучении курса физики и основ компьютерного моделирования. Кроме того, они могут быть частью выпускной квалификационной работы или исследовательского проекта. Их применение способствует повышению интереса студентов к численным методам, компьютерным моделям и информационным технологиям в целом. Библиография
1. Гулд Х. Тобочник Я. Компьютерное моделирование в физике: В 2 ч. / Х. Гулд, Я. Тобочник. – М.: Мир, 1990. – Ч.2. – 400 с.
2. Кунин С. Вычислительная физика. –– М.: Мир, 1992. –– 518 с. 3. Майер Р.В. Задачи, алгоритмы, программы. [Электронный ресурс] –– Глазов, 2011.-URL: http://maier-rv.glazov.net. 4. Майер Р.В. Использование вычислительных экспериментов при изучении волновых процессов в линейных и нелинейных средах // NB: Кибернетика и программирование.-2014.-№4.-C. 57-65. DOI: 10.7256/2306-4196.2014.4.12683. URL: http://www.e-notabene.ru/kp/article_12683.html. 5. Майер Р.В. Компьютерное моделирование физических явлений. –– Глазов: ГГПИ, 2009. –– 112 с. (Режим доступа: maier-rv.glazov.net). 6. Самарский А.А., Михайлов А.П. Математическое моделирование: Идеи. Методы. Примеры. –– М.: Физматлит, 2001. –– 320 с. References
1. Guld Kh. Tobochnik Ya. Komp'yuternoe modelirovanie v fizike: V 2 ch. / Kh. Guld, Ya. Tobochnik. – M.: Mir, 1990. – Ch.2. – 400 s.
2. Kunin S. Vychislitel'naya fizika. –– M.: Mir, 1992. –– 518 s. 3. Maier R.V. Zadachi, algoritmy, programmy. [Elektronnyi resurs] –– Glazov, 2011.-URL: http://maier-rv.glazov.net. 4. Maier R.V. Ispol'zovanie vychislitel'nykh eksperimentov pri izuchenii volnovykh protsessov v lineinykh i nelineinykh sredakh // NB: Kibernetika i programmirovanie.-2014.-№4.-C. 57-65. DOI: 10.7256/2306-4196.2014.4.12683. URL: http://www.e-notabene.ru/kp/article_12683.html. 5. Maier R.V. Komp'yuternoe modelirovanie fizicheskikh yavlenii. –– Glazov: GGPI, 2009. –– 112 s. (Rezhim dostupa: maier-rv.glazov.net). 6. Samarskii A.A., Mikhailov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery. –– M.: Fizmatlit, 2001. –– 320 s. |