КОМПЬЮТЕРНАЯ ГРАФИКА, ОБРАБОТКА ИЗОБРАЖЕНИЙ И РАСПОЗНАВАНИЕ ОБРАЗОВ

Сидоркина И.Г., Кудрин П.А.

АЛГОРИТМ ОПРЕДЕЛЕНИЯ МНОЖЕСТВА БЛИЖАЙШИХ ТОЧЕК ДЛЯ РАСПОЗНАВАНИЯ ТРЕХМЕРНЫХ ИЗОБРАЖЕНИЙ

Аннотация: Представлено решение задачи выбора эффективного алгоритма определения множества ближайших точек для распознавания трехмерных изображений. Следовательно, от того, насколько эффективно реализован алгоритм поиска МБТ, зависит эффективность всего алгоритма распознавания, использующего МБТ в качестве необходимого звена при обработке изображения. Рассмотрен алгоритм определения множества ближайших точек с помощью деления пространства на кубы (АДПК). Проведен анализ алгоритма, получены математические соотношения, характеризующие временную сложность алгоритма. В статье показано решение задачи оценки АДПК, которая состоит в разбиении на элементарные операции и выражение времени выполнения микроопераций через константы для получения порядка сложности и асимптотических соотношений, которые показывают степень роста времени выполнения алгоритма в зависимости от объема входных данных. Приведены оценки порядка временной сложности для двух реализаций АДПК: последовательной и распараллеленной. Приведена распараллеленная реализация алгоритма и получены оценки ее сложности. Произведено сравнение алгоритма с известными аналогами по временной сложности.

Ключевые слова: распознавание образов, сложность алгоритма, множества ближайших точек, эффективность алгоритма, трехмерное изображение, графические процессорные устройства, параллельные алгоритмы, динамические структуры данных, точечное распределение, векторное пространство

Введение.

Задача поиска множества ближайших точек (МБТ), заключающаяся в отыскании N наиболее близких по евклидовой метрике точек, является одной из подзадач распознавания изображений. Следовательно, от того, насколько эффективно реализован алгоритм поиска МБТ, зависит эффективность всего алгоритма распознавания, использующего МБТ в качестве необходимого звена при обработке изображения.

Существующие алгоритмы поиска МБТ в лучшем случае обладают порядком сложности $O(n \log n)$ и используют динамические структуры данных для хранения информации о точечном распределении . Использование динамических структур допустимо далеко не на всех существующих высокопроизводительных устройствах, к которым относятся графические процессорные устройства (ГПУ).

Поэтому актуальными задачами являются: создание алгоритмов, использующих структуры данных фиксированного размера, приближение порядка сложности алгоритмов поиска МБТ к линейному виду O(n), и создание, таким образом, более быстрых алгоритмов, чем существующие аналоги. Также важно, чтобы алгоритмы обладали высокой степенью распараллеливаемости, поскольку современные вычислительные устройства имеют параллельную архитектуру.

В статье предложен алгоритм деления пространства на кубы (АДПК), который отличается тем, что позволяет добиться порядка сложности O(n), использует статические структуры данных для своей работы и может быть распараллелен и использован для выполнения на ГПУ. Особенностью АДПК является то, что он аппроксимирует поиск МБТ и является эвристическим, это и обеспечивает скорость его работы. АДПК разработан для оперирования в конечномерном метрическом вещественном векторном пространстве. К существенным достоинствам АДПК относится возможность его использования не только на центральных, но и на графических процессорных устройствах. Для доказательства эффективности алгоритма произведена его оценка.

Ключевым понятием при оценке скорости выполнения алгоритма является *временная сложность алгоритма*, которая выражается в количестве элементарных операций, выполняемых на идеализированном компьютере².

Цель работы.

В статье показано решение задачи оценки АДПК, которая состоит в разбиении на элементарные операции и выражение времени выполнения микроопераций через

¹ Местецкий Л.М. Скелет многосвязной многоугольной фигуры. Труды межд. конф. "Трафикон-2005". Новосибирск, 2005.; S. Arya, D. M. Mount, Nathan S. Netanyahu. An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions. Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 573-582.

² Ахо, Альфред, В., Хопкрофт, Джон, Ульман, Джеффри, Д. Структуры данных и алгоритмы = Data Structures and Algorithms. — Издательский дом «Вильямс», 2000. — С. 384. — ISBN 5-8459-0122-7 (рус.) / ISBN 0-201-00023-7 (англ.). - c.28-29.

Алгоритм определения множества ближайших точек

константы для получения порядка сложности и асимптотических соотношений, которые показывают степень роста времени выполнения алгоритма в зависимости от объема входных данных. Приведены оценки порядка временной сложности для двух реализаций АДПК: последовательной и распараллеленной.

На основе полученной оценки алгоритма произведено сравнение с известными аналогами по скорости выполнения. Получены данные экспериментов, показывающих скорость выполнения последовательного и распараллеленного АДПК.

Описание АДПК.

АДПК состоит из двух главных циклов: распределение и поиск. Задача распределения состоит в формировании структуры данных. Точки, поступившие на вход, проходят индексацию. После этого начинается поиск — извлечение МБТ для точки запроса (иногда ее еще называют полюсом). Специфика поставленной задачи поиска МБТ состоит и в том, что поиск МБТ должен быть выполнен для каждой точки сцены. Это означает, что каждая точка сцены выступает в качестве точки запроса.

Индексация состоит в распределении точек по кубам и в организации двойного сопоставления [Куб] → [Список Точек] и [Точка] → [Куб]. Такое сопоставление необходимо, чтобы получить по идентификатору точки куб, в котором точка находится, и, наоборот, по идентификатору куба получить список точек, которые в нем находятся. Поиск состоит:

- 1) в получении индексов-координат куба, в котором лежит точка,
- 2) определении по индексам куба ближайших соседних кубов,
- 3) изъятии из соседних кубов списков точек и записи их в выходной список МБТ,
- 4) расширении границ поиска МБТ, если не найдено необходимое количество точек.

Принцип, лежащий в основе алгоритма: разбиение пространства на кубы, отнесение точек к этим кубам и поиск множества ближайших точек в соседних кубах. Соседние кубы вычисляются простым прибавлением целого смещения к индексам-координатам куба, в котором лежит точка запроса. Например, имеется куб с координатами (5; 2; 7), тогда ближайшими соседями для него окажутся кубы с индексами (4; 2; 7), (6; 2; 7), (5; 1; 7), (5; 3; 7), (5; 2; 6), (5; 2; 8). Следующими по дальности соседями окажутся кубы, отстоящие от заданного на 2 единицы, затем на 3 единицы, и так далее. Поиск работает путем пополнения искомого МБТ точками из куба, в котором лежит точка запроса, и соседних кубов. В случае если при просмотре соседних кубов нужное для МБТ количество

точек не может быть найдено, происходит расширение области поиска путем увеличения целого смещения на единицу и вовлечении большего количества кубов в процесс поиска. Как только необходимое количество ближайших соседей для всех точек запроса будет обнаружено, поиск прекращается. На выходе в списках у каждой точки сцены находятся сформированные для них МБТ.

Определение координат куба (i; j; k), в котором лежит точка (x; y; z) производится по формуле:

$$i = Z(x/a)$$

 $j = Z(y/a)$
 $k = Z(z/a)$, (2)

где Z(t) – целая часть от вещественного числа t,

а – длина ребра куба.

В каждом кубе лежит набор точек, количество которых различно. Возможны ситуации, когда в кубе не окажется ни одной точки.

Опишем алгоритм более детально с помощью псевдоязыка программирования³:

```
1 var a = pasmepPefpaKyfa;
2 var распределение = создать Пустую Таблицу();
// Распределение
3 for ( var точка in всеТочки )
      var индексыКуба = (точка.х / a, точка.у / a, точка.z / a);
      var идентификаторKуба = вычислить IdKубаIoИндексам(индексыKуба );
      var списокTочекKуба = получитьCписокTочекKуба (распределение,
идентификаторКуба );
      точка. Куб = идентификатор Куба;
      добавить ТочкуВСписок (списокТочекКуба, точка);
// Поиск
9 for (var точка in всеТочки)
10
      var граница = 1;
11
      while (вПределахДопустимыхГраниц (граница))
12
            var соседниеКубы = получитьСоседниеКубы ( распределение, точка,
граница );
            for ( var idКуба in соседниеКубы )
13
                  var списокТочекКуба = получитьСписокТочекДляКуба(
распределение, idКуба );
15
                  for ( var точкаКуба in списокТочекКуба )
```

³ Номерами слева обозначены операции, которые выполняются в алгоритме

Алгоритм определения множества ближайших точек

```
{
16
                         if ( отфильтроватьТочку ( точка.МБТ, точкаКуба ) )
                                continue;
17
                         пополнитьМБТ (точка.МБТ, точкаКуба);
18
             if ( необходимоеКоличествоТочекНайдено( точка. MBT ) )
                   break;
19
            увеличитьГраницыПоиска (граница);
```

Пикл

for (var точка in всеТочки)

выполняет последовательный выбор точки запроса и поиск МБТ для каждой точки сцены.

Операция

отфильтроватьТочку (точка.МБТ, точкаКуба) проверяет, следует ли помещать точку в МБТ.

А операция

пополнитьМЕТ (точка.МЕТ, точкаКуба)

производит поиск местоположения для точки и, если необходимое для МБТ количество точек уже присутствует, то выполняет вытеснение из МБТ самого дальнего от точки запроса соседа.

В результате работы АДПК в МБТ каждой точки будет помещен набор ее ближайших соседей.

Получение асимптотических соотношений для описания порядка сложности последовательного АДПК.

Временная сложность алгоритма обозначается функцией T(n), где n – объем входных данных. Временная сложность имеет порядок O(f(n)), если существуют такие n_0 и c ($n_0 = const$, c = const, c > 0, $n_0 > 0$), при которых для всех верно неравенство

⁴ Ахо, Альфред, В., Хопкрофт, Джон, Ульман, Джеффри, Д. Структуры данных и алгоритмы = Data Structures and Algorithms. — Издательский дом «Вильямс», 2000. — С. 384. — ISBN 5-8459-0122-7 (рус.) / ISBN 0-201-00023-7 (англ.). - с.28-29.

Требуется определить порядок временной сложности O(n) в зависимости от объема входных данных n.

Исходные данные:

n — количество точек на сцене,

m – количество точек в МБТ, константа,

k — максимальное количество точек в кубе, константа,

b – максимальная граница области поиска, константа.

Также введем функцию t(x), которая показывает время, требуемое для выполнения операции x.

Поскольку время выполнения нашего алгоритма зависит не только от объема входных данных, но и от самих данных, то T(n) определяется как время выполнения ϵ наихудшем случае, т.е. максимум от времени выполнения по всем входным данным.

Для АДПК наилучший случай, когда все точки распределены по сцене равномерно. Наихудший пример, когда точки сосредоточены в двух крайних кубах сцены и количество точек в каждом кубе меньше или равно величине m-1, как это показано на рисунке 1 (см. рис.1). В этом случае количество соседних кубов, которые надо проанализировать АДПК для каждой точки запроса будет максимальным.

Проанализируем алгоритм по шагам для наихудшего случая:

1. Инициализация

```
t(\{\text{инициализация}\}) = t(\{1\}) + t(\{2\})
t(\{1\}) = const; - время выполнений операции 1 (по псевдокоду алгоритма).
t(\{2\}) = const; - время выполнений операции 2 (создание таблицы + присвоение)
Обозначив за c_1 = t(\{1\}) + t(\{2\}) = const, получим
t(\{\text{инициализация}\}) = c_1 = const

2. Распределение
t(\{\text{распределение}\}) = n * t(\{\text{тело цикла 3}\})
```

 $t(\{\text{распределение}\}) = n * t(\{\text{1ело цикла 3}\})$ $t(\{\text{тело цикла 3}\}) = t(\{4\}) + t(\{5\}) + t(\{6\}) + t(\{7\}) + t(\{8\})$

 $t(\{4\})$, $t(\{5\})$, $t(\{6\})$, $t(\{7\})$, $t(\{8\})$ - время выполнения 4, 5, 6, 7, 8 операций, константы.

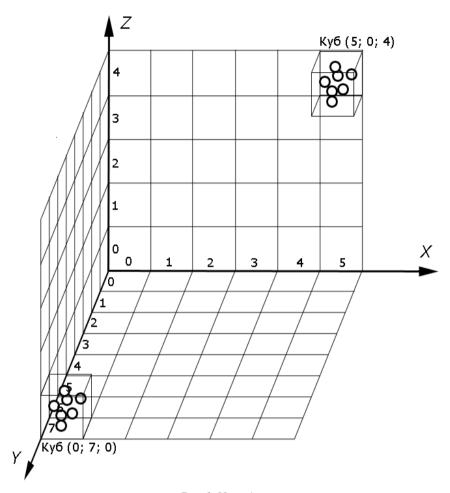


Рис. 1. Наихудиній случай.

Кубы (0; 7; 0) и (5; 0; 4) являются крайними, т.е. максимальная координата куба на сцене по оси X равна 5, по оси Y-7, по оси Z-4).

Тогда обозначив за
$$c_2=t(\{4\})+t(\{5\})+t(\{6\})+t(\{7\})+t(\{8\})=const$$
, получаем
$$t\big(\{\text{тело цикла }3\}\big)=c_2=const$$

В таком случае

$$t({pacпpeдeлeнue}) = c_2 n$$
 (3)

3. Поиск

$$t(\{\text{поиск}\}) = n * t(\{\text{тело цикла 9}\}),$$
 $t(\{\text{тело цикла 9}\}) = t(\{10\}) + t(\{\text{цикл 11}\}),$

$$t\big(\left\{\text{цикл 11}\right\}\big) = \sum_{r=1}^b t(\{12\}) + t\big(\{\text{цикл 13}\}\big) + t\big(\{18\}\big) + t\big(\{19\}\big),$$

$$t(\{\text{цикл 13}\}) = P(r) * (t(\{14\}) + t(\{\text{цикл 15}\})),$$
где

P(r) – количество соседних кубов для границы r.

$$t(\{\text{цикл 15}\}) = k * (t(\{16\}) + t(\{17\})),$$

 $t(\{10\})$, $t(\{12\})$, $t(\{14\})$, $t(\{16\})$, $t(\{17\})$, $t(\{18\})$, $t(\{19\})$ - время выполнения операций 10, 12, 14, 16, 17,18,19, причем значение времени их выполнения константно.

Время выполнения $t(\{16\})$ и $t(\{17\})$ константно, поскольку зависит m, а m = const.

Следовательно, сумму $t(\{16\})$ и $t(\{17\})$ можно выразить как функцию, зависящую от m:

$$c_2(m) = t(\{16\}) + t(\{17\}) \tag{4}$$

Получаем:

$$t(\{\text{цикл 15}\}) = kc_3(m) = const.$$

В таком случае, обозначив за $c_4 = t(\{14\})$, получаем

$$t(\{\text{цикл }13\}) = P(r) * (kc_3(m) + c_4).$$

Тогда, обозначив за $c_5 = t(\{12\}) + t(\{18\}) + t(\{19\}) = const$, получаем

$$t\big(\left\{\text{цикл 11}\right\}\big) = \sum_{r=1}^b P(r) * (kc_3(m) + c_4) + c_5 = \sum_{r=1}^b P(r) * (kc_3(m) + c_4) + \sum_{r=1}^b c_5,$$

Поскольку параметр b фиксирован по условиям задачи и равен некоторой константе, то имеет место равенство

$$\sum_{r=1}^{b} P(r) * (kc_3(m) + c_4) = P(1) * (kc_3(m) + c_4) + P(2) * (kc_3(m) + c_4) + P(3)$$

$$* (kc_3(m) + c_4) + \dots + P(b) * (kc_3(m) + c_4) = const,$$

поскольку P(1), P(2), P(3) ...P(b) - константы, и, следовательно, каждое слагаемое суммы также равно константе, количество слагаемых ограничено параметром b. Следовательно, обозначив за

$$c_6 = \sum_{r=1}^b c_5 = const,$$

И

$$c_7 = \sum_{r=1}^{b} P(r) * (kc_3(m) + c_4)$$

Получим, что

$$t(\{$$
цикл 11 $\}) = c_6 + \sum_{r=1}^b P(r) * (kc_3(m) + c_4) = c_6 + c_7 = const.$

И что,

$$t(\{\text{тело цикла 9}\}) = t(\{10\}) + t(\{\text{цикл 11}\}) = const$$
 (5)

Обозначив за $c_8 = t(\{10\})$ и $c_9 = t(\{\text{тело цикла 9}\})$, имеем результирующие соотношения для времени выполнения поиска:

$$t(\{\text{поиск}\}) = n * \left(c_8 + c_6 + \sum_{r=1}^b P(r) * (kc_3(m) + c_4)\right)$$

$$t(\{\text{поиск}\}) = c_9 n$$
(6)

Для АДПК функция времени выполнения будет выглядеть следующим образом:

$$T(n) = t(\{\text{инициализация}\}) + t(\{\text{распределение}\}) + t(\{\text{поиск}\})$$

Выразим функцию T(n) в зависимости от параметров k и b, подставив в (8) формулы (1), (3), (6):

$$T(n) = c_1 + c_2 n + n * \left(c_8 + c_6 + \sum_{r=1}^b P(r) * (kc_3(m) + c_4) \right)$$
$$= c_1 + n \left(c_2 + c_8 + c_6 + \sum_{r=1}^b P(r) * (kc_3(m) + c_4) \right)$$

Обозначив за $c_{10}=c_2+c_8+c_6$, выведем соотношение для T(n):

$$T(n) = c_1 + n \left(c_{10} + \sum_{r=1}^{b} P(r) * (kc_3(m) + c_4) \right)$$
 (9)

Подставив в (8) выражения из (1), (3), (7), получим $T(n) = c_1 + c_2 n + c_9 n = c_1 + n(c_2 + c_9)$

обозначив за $c_{11} = c_2 + c_9$, выразим T(n):

$$T(n) = c_1 + c_{10}n \tag{10}$$

Анализ формулы (10) показывает, что можно найти такие n_0 и c ($n_0 = const$, c = const, c > 0, $n_0 > 0$), при которых для всех $n \ge n_0$ будет верно неравенство $T(n) \le cn$

Для параллельного вычислительного устройства выражение (10) примет вид:

$$T(n) = c_1 + \frac{c_{10}n}{z}$$

Анализ формулы (11) показывает, что для идеального параллельного устройства, у которого $z = \infty$:

$$T(n) = const (12)$$

В результате для идеального параллельного устройства мы можем найти такие n_0 и $c\ (n_0=const,\,c=const,\,c>0,\,n_0>0)$, при которых для всех $n\geq n_0$ будет верно неравенство

$$T(n) \leq c$$

Таким образом, для идеального параллельного устройства достигается порядок сложности O(1).

На практике же такой результат не достижим, но возможен прирост производительности в $^{n}/_{z}$ раз. И чем выше параллелизм устройства, то есть больше значение параметра z, тем быстрее выполняется алгоритм.

Выволы.

В работе предложен алгоритм деления пространства на кубы (АДПК), задачей которого является эффективное и менее требовательное по количеству выполняемых элементарных операций решение одной из важных задач в распознавании образов – поиска множества ближайших точек (МБТ) 5 . Достоинствами предложенного алгоритма являются: малый порядок сложности, составляющий O(n); использование

⁵ Рябинин К.Б. Решение задачи выбора посадочной площадки беспилотного летательного аппарата на базе кватернионного анализа / К. Б. Рябинин // Вестник МарГТУ. – 2008. – №1(2). – С.33–43.

Алгоритм определения множества ближайших точек

статических структур данных для хранения информации о точечном распределении, что делает возможным использование АДПК на высокопроизводительных параллельных вычислительных устройствах, которые не поддерживают структуры, основанные на указателях и динамическом распределении памяти (к таким устройствам, в частности, относятся ГПУ); плюс АДПК обладает хорошей распараллеливаемостью.

Для последовательной и параллельной реализации АДПК получены математические соотношения, показывающие время выполнения и характеризующие порядок сложности, величина которого составила O(n) для последовательной реализации и O(1) для идеального параллельного устройства, в то время как известные аналоги обладают порядком сложности $O(n \log n)$ и даже $O(n^2)^6$. Таким образом, показывается целесообразность использования алгоритма для поиска МБТ.

Библиография:

- 1. Ахо, Альфред, В., Хопкрофт, Джон, Ульман, Джеффри, Д. Структуры данных и алгоритмы = Data Structures and Algorithms. Издательский дом «Вильямс», 2000. С. 384. ISBN 5-8459-0122-7 (рус.) / ISBN 0-201-00023-7 (англ.).-с.28-29.
- 2. Местецкий Л.М. Скелет многосвязной многоугольной фигуры. Труды межд. конф. "Графикон-2005". Новосибирск, 2005.
- 3. S. Arya, D. M. Mount, Nathan S. Netanyahu. An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions. Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 573-582.
- 4. Коробейников А.Г., Кудрин П.А., Сидоркина И.Г. Алгоритм распознавания трехмерных изображений с высокой детализацией. // Вестник Марийского государственного технического университета. Серия: Радиотехнические и инфокоммуникационные системы Йошкар-Ола: Марийский государственный технический университет 2010.-№2(9). С. 91-98.
- 5. Рябинин К.Б. Решение задачи выбора посадочной площадки беспилотного летательного аппарата на базе кватернионного анализа / К. Б. Рябинин // Вестник Мар Γ ТУ. -2008.-N1(2).-C.33-43.

References:

Akho, Al'fred, V., Khopkroft, Dzhon, Ul'man, Dzheffri, D. Struktury dannykh i algoritmy = Data Structures and Algorithms. — Izdatel'skii dom «Vil'yams», 2000. — S. 384. — ISBN 5-8459-0122-7 (rus.) / ISBN 0-201-00023-7 (angl.).-s.28-29.

2. Mestetskii L.M. Skelet mnogosvyaznoi mnogougol'noi figury. Trudy mezhd. konf. "Grafikon-2005". Novosibirsk, 2005.

⁶ Рябинин К.Б. Решение задачи выбора посадочной площадки беспилотного летательного аппарата на базе кватернионного анализа / К. Б. Рябинин // Вестник МарГТУ. – 2008. – N21(2). – C.33–43.

- 3. S. Arya, D. M. Mount, Nathan S. Netanyahu. An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions. Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 573-582.
- 4. Korobeinikov A.G., Kudrin P.A., Sidorkina I.G. Algoritm raspoznavaniya trekhmernykh izobrazhenii s vysokoi detalizatsiei. // Vestnik Mariiskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Radiotekhnicheskie i infokommunikatsionnye sistemy − Ioshkar-Ola: Mariiskii gosudarstvennyi tekhnicheskii universitet − 2010.-№2(9). − S. 91-98.
- 5. Ryabinin K.B. Reshenie zadachi vybora posadochnoi ploshchadki bespilotnogo letatel'nogo apparata na baze kvaternionnogo analiza / K. B. Ryabinin // Vestnik MarGTU. − 2008.-№1(2). -S.33-43.