Аннотация: of road transport is currently one of the priority areas in science, technology
and engineering. One of the most complicated tasks for all manufactures of electric
vehicles is the problem of providing electromagnetic safety of users of the cars and ensuring the
electromagnetic compatibility of all devices located in the vehicle. In addition there is a concern
among citizens and media about the possible health risks and traffic safety due to eff ects
of electromagnetic fields, generated by strong currents in the power lines and cables of electric
vehicles. It is also noted that such currents and the magnetic fields generated by them may also
pose a risk for various electromagnetic compatibility of electrical and electronic equipment
of the electric car. In this regards the measuring and evaluation of magnetic fields along with
the determination of their topology in the electric car in real time is highly important task. The
article present a comparative analysis of the methods for the detection of magnetic fields in an
electric car appropriate to identified specific features of these fields. The authors review the task
of defining the main characteristics of magnetic field in the electric car. Based on these characteristics
the authors concluded that the most perspective magnetic field sensors for the purposes
of electromagnetic safety in the electric car are traditional geophysics magnetostatic sensors and modern sensors based on giant impedance.
Ключевые слова: magnetic field, magnetic field detectors, measuring of the magnetic field, road transport, hybrid car, electric car, electromagnetic fields, ecology, electromagnetic safety, electric cart
Контактная информация: Korobeinikov Anatolii Grigor’evich, 197101, Russia, St. Petersburg, Kronverkskiy prospect, d.49
Библиография:
1. Ptitsyna N.G., Kopytenko Yu. A., Ismagilov V.S., Korobeynikov A.G.,
Elektromagnitnaya bezopasnost' elektrotransportnykh sistem: osnovnye istochniki
i parametry magnitnykh poley//Nauchno-tekhnicheskiy vestnik informatsionnykh
tekhnologiy, mekhaniki i optiki.-Sankt-Peterburg: SPBNIU ITMO, 2013.-Vyp. 84.-№
2. Analiz i sintez slozhnykh sistem.-S.65-71.-180 s.-ISSN 2226-1494. 2. Pike Research. A
part of Navigant, 2012, http://www.pikeresearch.com/. Data poslednego dostupa 24.01.2014
3. Muc A.M., Electromagnetic Fields Associated with Transportation Systems, Radiation
Health and Safety Consulting, Contract Report 4500016448, Air Health Effects Division,
Healthy Environments and Consumer Safety Branch Health, Canada, 2002
4. Halgamuge, M. N., C. D. Abeyrathne and P. Mendis. Measurements performed in
electric trains-Comparison with ICNIRP Limit & Laboratory Experiments. “Measurement
and Analysis of Electromagnetic Fields from Trams, Trains and Hybrid Cars”, Radiation
Protection Dosimetry, Vol. 141, Issue 3, pp 255-268, 2010.
5. Ptitsyna N.G., Villorezi Dzh., Kopytenko Yu.A. Tyasto M.I. Magnitnye polya na
elektrotransporte i ekologiya cheloveka//Sankt-Peterburg, Izd. Nestor-Istoriya. 2010.
120 c.
6. A.G. Korobeynikov, N.G. Ptitsyna, V.S. Ismagilov, Yu.A. Kopytenko Vychislenie
topologii magnitnogo polya v elektromobile s ispol'zovaniem fazovo-gradientnogo
metoda // Programmnye sistemy i vychislitel'nye metody.-2013.-1.-C. 45-55. DOI:
10.7256/2305-6061.2013.01.4
7. Snyder M. Magnetic Shielding for Electric Vechicles. Program Review. Contract DAAE07-
93-C-R107. Army TACOM, Chrysler Corp. 1995.
8. Ptitsyna N., Ponzetto A. Magnetic Fields Encountered in Electric Transport: Rail
Systems, Trolleybus and Cars. IEEE Conference Publications. Proceedings of the
Electromagnetic Compatibility (EMC EUROPE), 2012 International Symposium on
Fields, Waves & Electromagnetics, Rome, Italy, 17-21 Sep., P.1 – 5, 2012. DOI 10.1109/
EMCEurope.2012.6396901 . 2012.
9. Lenz J.E. A Review of Magnetic Sensors, Proc IEEE, Vol. 78, No. 6:973-989. 1990
10. Bartland T., Caruso M., Schneider R., Smith C. A New Perspective on Magnetic Field
Sensing. Sensors. Electric/Magnetic, December 1, 1998.
11. Janicke J.M. The Magnetic Measurement Handbook, New Jersey: Magnetic Research
Press. 1994
12. Ramsden E. Sept. «Measuring Magnetic Fields with Fluxgate Sensors,» Sensors:87-90.
1994.
13. Ripka P. «Review of Fluxgate Sensors,» Sensors and Actuators A, 33:129-141. 1996.
14. Sergeev V.G., Shikhin A.Ya. Magnitoizmeritel'nye pribory i ustanovki//M.
Enerogoizdat, Elektroizmeritel'nye pribory; Vyp. 24. 152 S.,1982.
15. Kopytenko Y.A., Kopytenko E.A., Amosov L.G., Zaitsev D.B., Voronov P.M.,
Timoshenkov Y.P., Magnetovariation complex MVC-2. Proc. of VI Workshop on
Geomagnetic Observatory Instruments, Data Acquisition and Processing. Dourbes, Belgium,
1994.
16. Hirota, E., Sakakima, H., Inomata, K. Giant Magneto-Resistance Devices. Springer, 2002,
P. 30, 177 p. , ISBN 978-3-540-41819-1
17. Mukovskiy Ya. M. Poluchenie i svoystva materialov s kolossal'nym
magnetosoprotivleniem // Ros. khim. zh. , 2001, T. XLV, № 5-6, S. 32-41.
18. Nagaev E. L. Manganity lantana i drugie magnitnye provodniki s gigantskim
magnitosoprotivleniem //Uspekhi fizicheskikh nauk. 1996, T. 166, № 8, S. 833-858.
DOI:10.3367/UFNr.0166.199608b.0833
19. Nikitin S. A. Gigantskoe magnitosoprotivlenie // Sorosovskiy obozrevatel'nyy
zhurnal. 2004, T. 8, № 2, S. 92-98.
20. Chappert C., Fert A. and Nguyen Van Dau F. (2007). «The emergence of spin electronics
in data storage». Nature Materials 6: 813–823. DOI:10.1038/nmat2024.
21. Coehoorn R. Novel Magnetoelectronic Materials and Devices. Giant magnetoresistance
and magnetic interactions in exchange-biased spin-valves. Lecture Notes. Technische
Universiteit Eindhoven (2003).
22. Panina LV, Mohri K. Magneto-impedance effect in amorphous wires. Appl Phys Lett; 65:
1189-91. 1994.
23. Beach R, Berkowitz A. Giant magnetic field dependent impedance of amorphous FeCoSiB
wire. Appl Phys Lett; 64: 3652-4. 1994
24. Gudoshnikov S., Zhukova A., Zhukova A., Sitnov Yu. Correlation of magnetic properties
and Giant magnetoimpedance characteristics of Co-rich amorphous microwires. Phis. Status
Solidi, A 206, No. 4, P. 625-629, 2009.
25. Cobeno AF, Zhukov A, Blanco JM, Gonzalez J. Giant magnetoimpedance effect in
CoMnSiB amorphous microwires. J Magn Mater; 234: L359-65. 2001.
26. Honkura Y. Development of amorphous wire type MI sensors for automobile use. J Magn
Magn Mater; 249: 375-81. 2002.
27. Zhukova V, Ipatov M, Zhukov A. Thin magnetically soft wires for magnetic microsensors.
Sensors; 9: 9216-40. 2009.
28. Geliang Yu., Chao Kh., Hong X. Design of a GMImagneticsensor based on longitudinal
excitation. Sensors and Actuators A: Physical. Vol 161, Issues 1–2, pp 72–77, 2010.
References (transliteration):
1. Ptitsyna N.G., Kopytenko Yu. A., Ismagilov V.S., Korobeynikov A.G.,
Elektromagnitnaya bezopasnost' elektrotransportnykh sistem: osnovnye istochniki
i parametry magnitnykh poley//Nauchno-tekhnicheskiy vestnik informatsionnykh
tekhnologiy, mekhaniki i optiki.-Sankt-Peterburg: SPBNIU ITMO, 2013.-Vyp. 84.-№
2. Analiz i sintez slozhnykh sistem.-S.65-71.-180 s.-ISSN 2226-1494. 2. Pike Research. A
part of Navigant, 2012, http://www.pikeresearch.com/. Data poslednego dostupa 24.01.2014
3. Muc A.M., Electromagnetic Fields Associated with Transportation Systems, Radiation
Health and Safety Consulting, Contract Report 4500016448, Air Health Effects Division,
Healthy Environments and Consumer Safety Branch Health, Canada, 2002
4. Halgamuge, M. N., C. D. Abeyrathne and P. Mendis. Measurements performed in
electric trains-Comparison with ICNIRP Limit & Laboratory Experiments. “Measurement
and Analysis of Electromagnetic Fields from Trams, Trains and Hybrid Cars”, Radiation
Protection Dosimetry, Vol. 141, Issue 3, pp 255-268, 2010.
5. Ptitsyna N.G., Villorezi Dzh., Kopytenko Yu.A. Tyasto M.I. Magnitnye polya na
elektrotransporte i ekologiya cheloveka//Sankt-Peterburg, Izd. Nestor-Istoriya. 2010.
120 c.
6. A.G. Korobeynikov, N.G. Ptitsyna, V.S. Ismagilov, Yu.A. Kopytenko Vychislenie
topologii magnitnogo polya v elektromobile s ispol'zovaniem fazovo-gradientnogo
metoda // Programmnye sistemy i vychislitel'nye metody.-2013.-1.-C. 45-55. DOI:
10.7256/2305-6061.2013.01.4
7. Snyder M. Magnetic Shielding for Electric Vechicles. Program Review. Contract DAAE07-
93-C-R107. Army TACOM, Chrysler Corp. 1995.
8. Ptitsyna N., Ponzetto A. Magnetic Fields Encountered in Electric Transport: Rail
Systems, Trolleybus and Cars. IEEE Conference Publications. Proceedings of the
Electromagnetic Compatibility (EMC EUROPE), 2012 International Symposium on
Fields, Waves & Electromagnetics, Rome, Italy, 17-21 Sep., P.1 – 5, 2012. DOI 10.1109/
EMCEurope.2012.6396901 . 2012.
9. Lenz J.E. A Review of Magnetic Sensors, Proc IEEE, Vol. 78, No. 6:973-989. 1990
10. Bartland T., Caruso M., Schneider R., Smith C. A New Perspective on Magnetic Field
Sensing. Sensors. Electric/Magnetic, December 1, 1998.
11. Janicke J.M. The Magnetic Measurement Handbook, New Jersey: Magnetic Research
Press. 1994
12. Ramsden E. Sept. «Measuring Magnetic Fields with Fluxgate Sensors,» Sensors:87-90.
1994.
13. Ripka P. «Review of Fluxgate Sensors,» Sensors and Actuators A, 33:129-141. 1996.
14. Sergeev V.G., Shikhin A.Ya. Magnitoizmeritel'nye pribory i ustanovki//M.
Enerogoizdat, Elektroizmeritel'nye pribory; Vyp. 24. 152 S.,1982.
15. Kopytenko Y.A., Kopytenko E.A., Amosov L.G., Zaitsev D.B., Voronov P.M.,
Timoshenkov Y.P., Magnetovariation complex MVC-2. Proc. of VI Workshop on
Geomagnetic Observatory Instruments, Data Acquisition and Processing. Dourbes, Belgium,
1994.
16. Hirota, E., Sakakima, H., Inomata, K. Giant Magneto-Resistance Devices. Springer, 2002,
P. 30, 177 p. , ISBN 978-3-540-41819-1
17. Mukovskiy Ya. M. Poluchenie i svoystva materialov s kolossal'nym
magnetosoprotivleniem // Ros. khim. zh. , 2001, T. XLV, № 5-6, S. 32-41.
18. Nagaev E. L. Manganity lantana i drugie magnitnye provodniki s gigantskim
magnitosoprotivleniem //Uspekhi fizicheskikh nauk. 1996, T. 166, № 8, S. 833-858.
DOI:10.3367/UFNr.0166.199608b.0833
19. Nikitin S. A. Gigantskoe magnitosoprotivlenie // Sorosovskiy obozrevatel'nyy
zhurnal. 2004, T. 8, № 2, S. 92-98.
20. Chappert C., Fert A. and Nguyen Van Dau F. (2007). «The emergence of spin electronics
in data storage». Nature Materials 6: 813–823. DOI:10.1038/nmat2024.
21. Coehoorn R. Novel Magnetoelectronic Materials and Devices. Giant magnetoresistance
and magnetic interactions in exchange-biased spin-valves. Lecture Notes. Technische
Universiteit Eindhoven (2003).
22. Panina LV, Mohri K. Magneto-impedance effect in amorphous wires. Appl Phys Lett; 65:
1189-91. 1994.
23. Beach R, Berkowitz A. Giant magnetic field dependent impedance of amorphous FeCoSiB
wire. Appl Phys Lett; 64: 3652-4. 1994
24. Gudoshnikov S., Zhukova A., Zhukova A., Sitnov Yu. Correlation of magnetic properties
and Giant magnetoimpedance characteristics of Co-rich amorphous microwires. Phis. Status
Solidi, A 206, No. 4, P. 625-629, 2009.
25. Cobeno AF, Zhukov A, Blanco JM, Gonzalez J. Giant magnetoimpedance effect in
CoMnSiB amorphous microwires. J Magn Mater; 234: L359-65. 2001.
26. Honkura Y. Development of amorphous wire type MI sensors for automobile use. J Magn
Magn Mater; 249: 375-81. 2002.
27. Zhukova V, Ipatov M, Zhukov A. Thin magnetically soft wires for magnetic microsensors.
Sensors; 9: 9216-40. 2009.
28. Geliang Yu., Chao Kh., Hong X. Design of a GMImagneticsensor based on longitudinal
excitation. Sensors and Actuators A: Physical. Vol 161, Issues 1–2, pp 72–77, 2010.