Правильная ссылка на статью:
Плешакова Е.С., Филимонов А.В., Осипов А.В., Гатауллин С.Т..
Идентификация кибербуллинга нейросетевыми методами
// Вопросы безопасности. – 2022. – № 3.
– С. 28-38.
DOI: 10.25136/2409-7543.2022.3.38488.
DOI: 10.25136/2409-7543.2022.3.38488
Читать статью
Аннотация: Авторы подробно рассматривают идентификацию кибербуллинга, который осуществляется мошенниками с незаконным использованием персональных данных жертвы. В основном источником данной информации служат социальные сети, электронная почта. Использование социальных сетей в обществе растет в геометрической прогрессии ежедневно. Использование социальных сетей помимо многочисленных плюсов, несет и негативный характер, а именно пользователи сталкиваются с многочисленными киберугрозами. К таким угрозам можно отнести использование персональных данных в преступных целях, киберзапугивание, киберпреступность, фишинг и кибербуллинг. В данной статье мы сосредоточимся на задаче выявления троллей. Выявление троллей в социальных сетях является сложной задачей поскольку они носят динамический характер и собираются в несколько миллиардов записей. Одно из возможных решений выявления троллей это применение алгоритмов машинного обучения. Основным вкладом авторов в исследование темы является применение метода выявления троллей в социальных сетях, который основывается на анализе эмоционального состояния пользователей сети и поведенческой активности. В этой статье, для выявления троллей пользователи объединяются в группы, это объединение осуществляется путем выявления схожего способа общения. Распределение пользователей осуществляется автоматически благодаря применению специального типа нейронных сетей, а именно самоорганизующихся карт Кохонена. Определение номера группы так же осуществляется автоматически. Для определения характеристик пользователей, на основании которых происходит распределение по группам, используется количество комментариев, средняя длина комментария и показатель, отвечающий за эмоциональное состояние пользователя.
Ключевые слова: искусственный интеллект, кибербуллинг, машинное обучение, карта Кохонена, нейронные сети, персональные данные, компьютерное преступление, киберпреступления, социальные сети, буллинг
Библиография:
C. Chen, K. Wu, V. Srinivasan, X. Zhang. Battling the Internet Water Army: Detection of Hidden Paid Posters. http://arxiv.org/pdf/1111.4297v1.pdf, 18 Nov 2011
D. Yin, Z. Xue, L. Hong, B. Davison, A. Kontostathis, and L. Edwards. Detection of harassment on web 2.0. Proceedings of the Content аnalysis in the Web, 2, 2009
T. Kohonen. Self-organization and associative memory. 2d ed. New-York, Springer-Verlag, 1988
Y. Niu, Y. min Wang, H. Chen, M. Ma, and F. Hsu. A quantitative study of forum spamming using contextbased analysis. In In Proc. Network and Distributed System Security (NDSS) Symposium, 2007
В.В. Киселёв. Автоматическое определение эмоций по речи. Образовательные технологии. №3, 2012, стр. 85-89
Р.А. Внебрачных. Троллинг как форма социальной агрессии в виртуальных сообществах. Вестник Удмуртского университета, 2012, Вып.1, стр. 48-51
С.В. Болтаева, Т.В. Матвеева. Лексические ритмы в тексте внушения. Русское слово в языке, тексте и культурной среде. Екатеринбург, 1997, стр. 175-185