Базы знаний, интеллектуальные системы, экспертные системы, системы поддержки принятия решений
Правильная ссылка на статью:
Чернышев Ю.О., Венцов Н.Н.
Разработка декодеров искусственной иммунной системы, восприимчивых к нечетким командам
// Кибернетика и программирование.
2016. № 5.
С. 213-221.
DOI: 10.7256/2306-4196.2016.5.19885 URL: https://nbpublish.com/library_read_article.php?id=19885
Аннотация:
Объектом исследования является модель искусственной иммунной системы. Предмет исследования — разработка способа построения нечеткого декодера. В качестве декодеров предложено использовать нечеткие функции принадлежности, описывающие соответствие контролируемого параметра критической ситуации. Использование такого подхода на основе нечетких декодеров, позволило избавиться от бинарной количественной классификации и перейти к расплывчатым и качественным оценкам. Приведен пример построения декодера для нечеткого условия «длина полупериметра L, описывающего фрагмент проектируемого изделия, должна быть не более 0,7 nm». На основе функции CON(μ1(L)), описывающей соответствие нечеткому условию «очень близко к 0,7 nm», построена функция μ5(L), описывающая соответствие нечеткому условию «очень меньше 0,7 nm». Расплывчатый декодер для оценки соответствия интервалу, строится на основе функции принадлежности данному интервалу. Приведен пример графика зависимости функции μ7 декодера от длинны полупериметра L, описывающей принадлежность к условию «желательная длина полупериметра от 0,55 до 0,7 nm». По аналогии с условиями «очень близко к 0,7 nm» и «слегка близко к 0,7 nm»можно определить функции принадлежности «очень в диапазоне от 0,55 до 0,7 nm» и «слегка в диапазоне от 0,55 до 0,7 nm». Метод исследования базируется на построении нечетких декодеров, описывающих нежелательные состояния вычислительного процесса. Нечеткость описывается при помощи функции принадлежности. Новизна исследования состоит в получении расплывчатых декодеров восприимчивых к нечетким командам. Используя соответствующие нечеткие функции принадлежности μ декодера, можно корректировать процесс оценивания степени близости контролируемого параметра к критической ситуации. Применение функций CON и DIL к функциям принадлежности декодеров позволяет менять их восприимчивость на тестовых данных от 20-30% до 200%-300%
Ключевые слова:
Искусственная иммунная система, отрицательный отбор, декодер, принятие решений, нечеткий подход, функция принадлежности, адаптация, экспертные системы, полупериметр, нечеткое условие
Abstract:
The object of research is the model of artificial immune system. Subject of the research is providing a method of constructing a fuzzy decoder. The authors proposed to use fuzzy membership function as the decoders. This functions describes the relevance of a controlled parameter to a critical situation. Using such an approach based on fuzzy decoders allows to move from binary quantitative classification to fuzzy qualitative estimates. The article present an example o f construction of a decoder for fuzzy term “semiperimeter length of L, describing a fragment of the designed product, should be no more than 0.7 nm”. On the basis of the function CON(μ1(L)), describing fuzzy matching condition “very close to 0.7 nm” the authors build a function μ5(L), describing fuzzy matching condition “a little less than 0.7 nm”. Fuzzy decoder for conformity assessment interval is based on the given interval membership function. The authors give a graph of a μ7 decoder function semiperimeter on the length L, describing the belonging to “semiperimeter desired length from 0.55 to 0.7 nm” condition. By analogy with the conditions “very close to 0.7 nm” and “slightly close to 0.7 nm” it is possible to determine a membership functions “very in range from 0.55 to 0.7 nm” and “slightly in range from 0.55 to 0.7 nm”. The research method is based on the construction of fuzzy decoders describing the undesirable state of the computational process. Fuzziness is described by the membership function. The novelty of the research is in getting fuzzy decoders receptive to fuzzy commands. Using the corresponding fuzzy membership function μ decoder it is possible adjust the process of estimating the degree of closeness of the controlled parameter to a critical situation. Applying CON and DIL functions to the decoder functions allows to change their susceptibility on test data from 20-30% up to 200% -300%.
Keywords:
decision making , fuzzy approach, membership function, adaptation, expert systems, semiperimeter, fuzzy condition, decoder, adverse selection, artificial immune system