Гибадуллин Р.Ф., Викторов И.В. —
Неоднозначность результатов при использовании методов класса Parallel в рамках исполняющей среды .NET Framework
// Программные системы и вычислительные методы. – 2023. – № 2.
– С. 1 - 14.
DOI: 10.7256/2454-0714.2023.2.39801
URL: https://e-notabene.ru/itmag/article_39801.html
Читать статью
Аннотация: Параллельное программирование – это способ написания программ, которые могут выполняться параллельно на нескольких процессорах или ядрах. Это позволяет программам обрабатывать большие объемы данных или выполнить более сложные вычисления за приемлемое время, чем это было бы возможно на одном процессоре. Преимущества параллельного программирования: увеличение производительности, распределение нагрузки, обработка больших объемов данных, улучшение отзывчивости, увеличение надежности. В целом, параллельное программирование имеет множество преимуществ, которые могут помочь улучшить производительность и надежность программных систем, особенно в условиях растущей сложности вычислительных задач и объемов данных. Однако параллельное программирование также может иметь свои сложности, связанные с управлением синхронизацией, гонками данных и другими аспектами, которые требуют дополнительного внимания и опыта со стороны программиста. В ходе тестирования параллельных программ можно получить неоднозначные результаты. Например, это может происходить, когда мы оптимизируем объединение данных типа float или double посредством методов For или ForEach класса Parallel. Подобное поведение программы заставляет усомниться в потокобезопасности написанного кода. Такой вывод может быть неправильным и преждевременным. Статья раскрывает возможную причину неоднозначности результатов, получаемых параллельной программой, и предлагает лаконичное решение вопроса.
Abstract: Parallel programming is a way of writing programs that can run in parallel on multiple processors or cores. This allows programs to process large amounts of data or perform more complex calculations in a reasonable amount of time than would be possible on a single processor. The advantages of parallel programming: increased performance, load sharing, processing large amounts of data, improved responsiveness, increased reliability. In general, parallel programming has many advantages that can help improve the performance and reliability of software systems, especially with the increasing complexity of computational tasks and data volumes. However, parallel programming can also have its own complexities related to synchronization management, data races, and other aspects that require additional attention and experience on the part of the programmer. When testing parallel programs, it is possible to get ambiguous results. For example, this can happen when we optimize concatenation of float- or double-type data by means of For or ForEach methods of the Parallel class. Such behavior of a program makes you doubt about the thread safety of the written code. Such a conclusion can be incorrect and premature. The article reveals a possible reason for ambiguity of the results received by a parallel program and offers a concise solution of the question.
Гибадуллин Р.Ф. —
Потокобезопасные вызовы элементов управления в обогащенных клиентских приложениях
// Программные системы и вычислительные методы. – 2022. – № 4.
– С. 1 - 19.
DOI: 10.7256/2454-0714.2022.4.39029
URL: https://e-notabene.ru/itmag/article_39029.html
Читать статью
Аннотация: Когда была выпущена первая версия .NET Framework в обогащенных клиентских приложениях существовал шаблон, ориентированный на циклы обработки сообщений, где использовалась встроенная очередь для передачи единиц исполнения из рабочих потоков. Далее было разработано обобщенное решение ISynchronizeInvoke, в рамках которого поток-источник может поставить делегат в очередь к потоку-приемнику и, как необязательный вариант, ожидать завершения этого делегата. После введения поддержки асинхронных страниц в архитектуру ASP.NET шаблон ISynchronizeInvoke не походил, так как асинхронные ASP.NET-страницы не сопоставлены с единственным потоком. Это стало причиной создания ещё более обобщенного решения – SynchronizationContext, что и является предметом исследования. В статье на практических примерах представлено, как следует обновлять элементы пользовательского интерфейса из рабочих потоков, не нарушая потокобезопасность пользовательского приложения. В этом аспекте предлагаются решения: с применением методов Beginlnvoke или Invoke для постановки этого делегата в очередь сообщений потока пользовательского интерфейса; с захватом контекста синхронизации потока пользовательского интерфейса посредством свойства Current класса SynchronizationContext; с применением устаревшего класса BackgroundWorker, обеспечивающий неявный захват контекста синхронизации потока пользовательского интерфейса. Не оставлена без внимания особенность реализации абстрактного класса SynchronizationContext в платформе ASP.NET. Сформированы практические рекомендации по использованию механизма маршализации на примере разработки мультиклиентного чата с централизованным сервером.
Abstract: When the first version of the .NET Framework was released, there was a pattern in enriched client applications that focused on message processing loops, where an embedded queue was used to pass execution units from worker threads. A generalized ISynchronizeInvoke solution was then developed in which the source thread could queue a delegate to the destination thread and, as an optional option, wait for that delegate to complete. After asynchronous page support was introduced into the ASP.NET architecture, the ISynchronizeInvoke pattern did not work because asynchronous ASP.NET pages are not mapped to a single thread. This was the reason for creating an even more generalized solution – SynchronizationContext, which is the subject of the research. The article uses practical examples to show how to update UI elements from worker threads without breaking thread-safety of the user application. Solutions proposed in this aspect are: using Beginlnvoke or Invoke methods to put this delegate into the UI thread message queue; capturing the UI thread synchronization context via the Current property of the SynchronizationContext class; using the deprecated BackgroundWorker class, which provides an implicit capture of the UI thread synchronization context. The peculiarity of implementation of the SynchronizationContext abstract class in ASP.NET platform is not left unnoticed. Practical recommendations on the use of marshalling mechanism on the example of development of multiclient chat with a centralized server are formulated.
Гибадуллин Р.Ф. —
Организация защищенной передачи данных в сенсорной сети на базе микроконтроллеров AVR
// Кибернетика и программирование. – 2018. – № 6.
– С. 80 - 86.
DOI: 10.25136/2644-5522.2018.6.24048
URL: https://e-notabene.ru/kp/article_24048.html
Читать статью
Аннотация: Предметом исследования в работе является реализация алгоритма шифрования AES на базе микроконтроллеров AVR для обеспечения защищенной передачи данных в сенсорной сети, представляющую собой беспроводную сетевую среду из множества датчиков малой мощности. В этой среде данные собираются с помощью датчиков и используются путем систематического анализа и передачей данных между различными сервисами. В работе используется алгоритм шифрования AES Rijndael, проводятся замеры производительности шифрования и дешифрования на 8-разрядном микроконтроллере. Анализируется эффективность коммуникации на основе общей задержки передачи данных за транзитный участок в сенсорной сети. Исследования проводились с привлечением теории защиты информации, компьютерного моделирования, компьютерных сетей и принципов программирования микроконтроллеров. Новизна исследования заключается в получении знаний о скорости передачи данных в сенсорной сети при условии защиты коммуникации симметричным алгоритмом шифрования на базе микроконтроллеров AVR для выполнения криптографических вычислений. В результате анализа выявлено, что время криптографических вычислений и процессорный цикл по размерам данных увеличиваются примерно в 2 раза. Задержка в 30 прыжках и 180 прыжках между узлами сенсорной сети составляет 27450 мс., 164700 мс. соответственно. А если количество узлов во всей сети равно 65 535 (максимальное количество узлов в сети датчиков), то задержка составит примерно 16 часов.
Abstract: The subject of the research is the implementation of the AES encryption algorithm based on AVR microcontrollers to provide secure data transmission in the sensor network. The sensor network is a network technique for the implementation of Ubiquitous computing environment. It is wireless network environment that consists of the many sensors of lightweight and low-power. Though sensor network provides various capabilities, it is unable to ensure the secure authentication between nodes. Eventually it causes the losing reliability of the entire network and many secure problems. Therefore, encryption algorithm for the implementation of reliable sensor network environments is required to the applicable sensor network. In this paper, the author proposes the solution of reliable sensor network to analyze the communication efficiency through measuring performance of AES encryption algorithm by plaintext size, and cost of operation per hop according to the network scale.