Рус Eng За 365 дней одобрено статей: 1993,   статей на доработке: 311 отклонено статей: 756 
Библиотека
Статьи и журналы | Тарифы | Оплата | Ваш профиль

Бураков С.В., Залога А.Н., Панькин С.И., Семенкин Е.С., Якимов И.С. Применение самоконфигурируемого генетического алгоритма для моделирования атомной кристаллической структуры химических соединений по данным рентгеновской дифракции

Опубликовано в журнале "Программные системы и вычислительные методы" в № 4 за 2014 год в рубрике "Математическое и программное обеспечение новых информационных технологий" на страницах 500-512.

Аннотация: Предметом исследования в данной работе является оценка возможности и степени эффективности применения самоконфигурирующегося генетического алгоритма глобальной оптимизации (СГА) для автоматизации задачи определения атомной кристаллической структуры новых веществ по данным порошковой рентгеновской дифракции. Предложенный вариант алгоритма СГА исследован на задаче определения известной кристаллической структуры химического соединения Ba2CrO4, в которой требовалось найти расположение 7-ми независимых атомов в элементарной кристаллической ячейке. Для анализа эффективности и определения частоты сходимости структурных моделей к истинной структуре этого вещества в процессе эволюционного поиска было сделано несколько десятков запусков СГА с различными размерами популяций структурных моделей и типами генетических операций. Суть метода самоконфигурирования состоит в том, что подбор оптимальных генетических операторов селекции, скрещивания и мутации из предложенного множества их возможных вариантов производится самим алгоритмом СГА в ходе решения задачи. Вероятности для операторов быть выбранными для генерации очередного поколения популяции структурных моделей адаптируются, исходя из успешности эволюции с помощью этих операторов на предыдущем поколении. Это приводит к автоматическому выбору наилучших операторов, обеспечивающих сходимость структурных моделей к истинной кристаллической структуре. Одной из основных проблем, препятствующих применению стохастических эволюционных генетических алгоритмов для структурного анализа, является необходимость нетривиального эмпирического подбора генетических операторов. Применение самоконфигурируемого генетического алгоритма для автоматизации выбора оптимальных генетических операторов в задаче моделирования атомной кристаллической структуры химических соединений по данным рентгеновской дифракции предложено впервые. При определении кристаллической структуры Ba2CrO4 по СГА достигнута частота сходимости к истинной структуре этого вещества 80%. Это создает возможность разработки автоматизированного эволюционного генетического алгоритма структурного анализа по рентгенодифракционным данным.

Ключевые слова: эволюционные алгоритмы, генетические алгоритмы, самоконфигурация генетических алгоритмов, кристаллическая структура, рентгеновская порошковая дифракция, полнопрофильный анализ, определение кристаллической структуры, самоконфигурация, дифрактограмма, генетические операторы

DOI: 10.7256/2305-6061.2014.4.14028

Эта статья может быть бесплатно загружена в формате PDF для чтения. Обращаем ваше внимание на необходимость соблюдения авторских прав, указания библиографической ссылки на статью при цитировании.

Скачать статью

Библиография:
Семенкина М.Е., Семенкин Е.С. Программа для решения задач символьной регрессии самоконфигурируемым алгоритмом генетического программирования. – М.: Роспатент. 2012. № гос. рег. 2012619347.
Гуменникова А.В., Емельянова М.Н., Семенкин Е.С., Сопов Е.А. Об эволюционных алгоритмах решения сложных задач оптимизации // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. 2003. № 4. С. 14.
Semenkin E., Semenkina M. Stochastic Models and Optimization Algorithms for Decision Support in Spacecraft Control Systems Preliminary Design // Informatics in Control, Automation and Robotics.-Lecture Notes in Electrical Engineering, Springer-Verlag, Berlin Heidelberg. 2014. Vol. 283. P. 51-65.
Burakov S.V., Semenkin E.S. Solving variational and Cauchy problems with self-configuring genetic programming algorithms // International Journal of Innovative Computing and Applications. 2013. Volume 5, Issue 3. P. 152–162.
Semenkin E., Semenkina M. The Choice of Spacecrafts' Control Systems Effective Variants with Self-Configuring Genetic Algorithm. In: Ferrier, J.L. et al (Eds.): Informatics in Control, Automation and Robotics: Proceedings of the 9th International Conference ICINCO’2012.– Rome: Italy. 2012. Vol. 1. P. 84-93.
Semenkin E.S., Semenkina M.E. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator // Advances in Swarm Intelligence. Lecture Notes in Computer Science 7331. – Springer-Verlag, Berlin Heidelberg. 2012. P. 414-421.
Meredig B., Wolverton C. A hybrid computational–experimental approach for automated crystal structure solution // Nature Materials. 2013. No. 12, P. 123–127.
Zaloga A. N., Burakov S. V., Semenkin E. S., Yakimov I. S.. A Research of Convergence of Multi-Population Binary and Real Genetic Algorithms for Solution of Crystal Structure from X-Ray Powder Diffraction Data // Applied Mechanics and Materials. Proceedings of APMSIT Conference. Shanghai, China. 2014.
Harris K. D. M. Powder Diffraction Crystallography of Molecular Solids // Top. Curr. Chem. 2012. No. 315. P. 133–177.
Harris K.D.M. Fundamentals and applications of genetic algorithms for structure solution from powder X-ray diffraction data // Computational Materials Science. 2009. V. 45. Issue 1. P. 16-20.
Yakimov Y. I., Semenkin E. S., Yakimov I. S. Two-level genetic algorithm for a fullprofile fitting of X-ray powder patterns // Z. Kristallogr. Suppl. 2009. No. 30. P. 21-26.
Griffin T.A.N., Shankland K., van de Streek J., Cole J. GDASH: a grid-enabled program for structure solution from powder diffraction data // J. Appl. Cryst. 2009. No. 42. P. 356-359.
Favre-Nicolin V., Cerny R. FOX, “free objects for crystallography”: a modular approach to ab initio structure determination from powder diffraction // J. Appl. Cryst. 2002. No. 35. P. 734-743.
David W.I.F., Shankland K. Structure determination from powder diffraction data // Acta Cryst. 2008. A64. P. 52-64.
Cerny R., Favre-Nicolin V. Direct space methods of structure determination from powder diffraction: principles, guidelines, perspectives // Z. Kristallogr. Suppl. 2007. No. 222. 105-113.
Young R.A. The Rietveld Method / Oxford University Press. 1995. 298 p.
Якимов Я.И., Кирик С.Д., Семенкин Е.С., Соловьев Л.А., Якимов И.С. Эволюционный метод моделирования кристаллической структуры вещества по данным порошковой дифракции // Журнал Сибирского федерального университета, Химия. 2013. №6. С. 180-191.

Правильная ссылка на статью:
просто выделите текст ссылки и скопируйте в буфер обмена